股票交易 (单调队列优化DP)
股票交易
$ solution: $
这道题以前就写了,题目很好,但自己没有发题解,来补一篇:
首先,题目出得很有迷惑性,但我们不难想到状态要设天数,和自己手上的股票数目(因为这两个就是充要信息)。而我们转移也比较常规,跟着题意模拟就行:
- (不买不卖): $ f[i][j]=f[i-1][j] $
- (买入): $ f[i][j]=max{~\sum_{p=1}^{p<i} \sum_{q=0}^{q<j} f[p][q]-(j-q)\times AP[i]~} $
- (卖出): $ f[i][j]=max{~\sum_{p=1}^{p<i} \sum_{q=0}^{q>j} f[p][q]+(q-j)\times BP[i]~} $
但是我们发现这样转移是 $ n^4 $ 的。因为我们每一个 $ f[i][j] $ 需要往前枚举 $ p $ ,然后因为股票可以买入卖出,还要枚举一个 $ q $ 。就是每一个 $ f[i][j] $ 都要完全枚举所有的 $ f[p][q] $ 来转移。但是我们可以发现我们的 $ p $ 是完全可以不用枚举,因为第一个转移保证了 $ f[i-1] $ 就是最优的。于是转移变成了 $ n^3 $ 但是数据范围告诉我们这样还不够。
- (买入): $ f[i][j]=max{~\sum_{k=1}^{k<j} f[i-1][k]-(j-k)\times AP[i]~} $
- (卖出): $ f[i][j]=max{~\sum_{k=1}^{k>j} f[i-1][k]+(k-j)\times BP[i]~} $
这两个式子其实把括号拆开后就是一个式子:
$ f[i][j]=max{~\sum_{k=1}^{k>j} f[i-1][k]+k\times P[i]-j\times P[i]~} $
单调队列优化: 我们发现我们买入卖出的式子是一个变量单调递增的,我们的 $ i $ 是最外层循环,在内层循环里它相当于定值,而我们的k和j在式子中是独立的,完全可以用单调队列维护 $ f[i-1][k]+k\times P[i] $ ,而 $ -j\times P[i] $ 就是定值,只需要来两次单调队列分别对应 $ AP[i] $ 和 $ BP[i] $ 即可。
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
#define max(A,B) (A>B?A:B)
using namespace std;
int n,m,w,l,r,now,a,b,c,d,ans;
int f[2001][2001],t[2001],p[2001];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
int main(){
//freopen("1.in","r",stdin);
//freopen(".out","w",stdout);
n=qr(),m=qr(),w=qr();
for(rg i=0;i<=n;++i)
for(rg j=0;j<=m;++j)
f[i][j]=-inf;
for(rg i=1;i<=n;++i){
a=qr(),b=qr();
c=qr(),d=qr();
for(rg j=0;j<=c;++j)
f[i][j]=-1*j*a;
for(rg j=0;j<=m;++j)
f[i][j]=max(f[i][j],f[i-1][j]);
if(i<=w)continue;
l=1;r=0;
for(rg j=0;j<=m;++j){
now=f[i-w-1][j]+j*a;
while(l<=r&&p[l]<j-c)++l;
while(l<=r&&t[r]<=now)--r;
t[++r]=now;p[r]=j;
if(l <= r)f[i][j]=max(f[i][j],t[l]-j*a);
}
l=1;r=0;
for(rg j=m;j>=0;--j){
now=f[i-w-1][j]+j*b;
while(l<=r&&p[l]>j+d)++l;
while(l<=r&&t[r]<=now)--r;
t[++r]=now;p[r]=j;
if(l <= r)f[i][j]=max(f[i][j],t[l]-j*b);
}
}
for(rg j=0;j<=m;++j)
ans=max(ans,f[n][j]);
printf("%d\n",ans);
return 0;
}
股票交易 (单调队列优化DP)的更多相关文章
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP
上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...
- SCOI 股票交易 单调队列优化dp
这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...
- bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401
这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...
- LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)
传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ1855 股票交易 单调队列优化 DP
描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as, 某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...
- 股票交易——单调队列优化DP
题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...
- 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)
传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...
随机推荐
- VMware 虚拟化编程(12) — VixDiskLib Sample 程序使用
目录 目录 前文列表 vixDiskLibSample 安装 Sample 程序 Sample 程序使用方法 前文列表 VMware 虚拟化编程(1) - VMDK/VDDK/VixDiskLib/V ...
- 阶段1 语言基础+高级_1-3-Java语言高级_05-异常与多线程_第1节 异常_1_异常概念&异常体系
Throwable是可抛出的意思.
- G2 基本使用 折线图 柱状图 饼图 基本配置
G2的基本使用 1.浏览器引入 <!-- 引入在线资源 --> <script src="https://gw.alipayobjects.com/os/lib/antv ...
- 转:高效实用的.NET开源项目
本文转自:http://www.cnblogs.com/pengze0902/p/7669631.html 似乎...很久很久没有写博客了,一直都想写两篇,但是却没有时间写.感觉最近有很多事情需要处理 ...
- Python笔记(二十九)_模块
模块 在Python中,一个.py文件就是一个模块 if __name__ == '__main__':所有模块都有一个 __name__ 属性,__name__ 的值取决于如何应用模块 run当前文 ...
- 应用安全-Web安全-CSRF攻防整理
原理 - 登录受信任网站A,并在本地生成Cookie.在不登出A的情况下,访问危险网站B. #csrfdemo.php <?php $data = json_decode(file_get_co ...
- IDEA-关闭自动保存&标志修改文件为星号(一)
IDEA优化 intellij 关闭自动保存
- jmeter _Random函数生成随机数
因对发送邮件接口做压测发现相同数据对服务器的压力很小所以需要每次发送请求都需要不同的参数,所以要对某个字段做随机数 选项中-函数助手对话框
- 第一次Java学习总结
初学Java感觉还是蛮可以的,可是做起题目来还是不能得心应手,自己不懂得太多太多,还是需要不断努力去学啊!下面我就把这些天学到的知识点总结一下: 初学Java,我把目前所学知识点总结如下: 1.jav ...
- [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)
[BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...