股票交易 (单调队列优化DP)
股票交易

$ solution: $
这道题以前就写了,题目很好,但自己没有发题解,来补一篇:
首先,题目出得很有迷惑性,但我们不难想到状态要设天数,和自己手上的股票数目(因为这两个就是充要信息)。而我们转移也比较常规,跟着题意模拟就行:
- (不买不卖): $ f[i][j]=f[i-1][j] $
- (买入): $ f[i][j]=max{~\sum_{p=1}^{p<i} \sum_{q=0}^{q<j} f[p][q]-(j-q)\times AP[i]~} $
- (卖出): $ f[i][j]=max{~\sum_{p=1}^{p<i} \sum_{q=0}^{q>j} f[p][q]+(q-j)\times BP[i]~} $
但是我们发现这样转移是 $ n^4 $ 的。因为我们每一个 $ f[i][j] $ 需要往前枚举 $ p $ ,然后因为股票可以买入卖出,还要枚举一个 $ q $ 。就是每一个 $ f[i][j] $ 都要完全枚举所有的 $ f[p][q] $ 来转移。但是我们可以发现我们的 $ p $ 是完全可以不用枚举,因为第一个转移保证了 $ f[i-1] $ 就是最优的。于是转移变成了 $ n^3 $ 但是数据范围告诉我们这样还不够。
- (买入): $ f[i][j]=max{~\sum_{k=1}^{k<j} f[i-1][k]-(j-k)\times AP[i]~} $
- (卖出): $ f[i][j]=max{~\sum_{k=1}^{k>j} f[i-1][k]+(k-j)\times BP[i]~} $
这两个式子其实把括号拆开后就是一个式子:
$ f[i][j]=max{~\sum_{k=1}^{k>j} f[i-1][k]+k\times P[i]-j\times P[i]~} $
单调队列优化: 我们发现我们买入卖出的式子是一个变量单调递增的,我们的 $ i $ 是最外层循环,在内层循环里它相当于定值,而我们的k和j在式子中是独立的,完全可以用单调队列维护 $ f[i-1][k]+k\times P[i] $ ,而 $ -j\times P[i] $ 就是定值,只需要来两次单调队列分别对应 $ AP[i] $ 和 $ BP[i] $ 即可。
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
#define max(A,B) (A>B?A:B)
using namespace std;
int n,m,w,l,r,now,a,b,c,d,ans;
int f[2001][2001],t[2001],p[2001];
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
int main(){
//freopen("1.in","r",stdin);
//freopen(".out","w",stdout);
n=qr(),m=qr(),w=qr();
for(rg i=0;i<=n;++i)
for(rg j=0;j<=m;++j)
f[i][j]=-inf;
for(rg i=1;i<=n;++i){
a=qr(),b=qr();
c=qr(),d=qr();
for(rg j=0;j<=c;++j)
f[i][j]=-1*j*a;
for(rg j=0;j<=m;++j)
f[i][j]=max(f[i][j],f[i-1][j]);
if(i<=w)continue;
l=1;r=0;
for(rg j=0;j<=m;++j){
now=f[i-w-1][j]+j*a;
while(l<=r&&p[l]<j-c)++l;
while(l<=r&&t[r]<=now)--r;
t[++r]=now;p[r]=j;
if(l <= r)f[i][j]=max(f[i][j],t[l]-j*a);
}
l=1;r=0;
for(rg j=m;j>=0;--j){
now=f[i-w-1][j]+j*b;
while(l<=r&&p[l]>j+d)++l;
while(l<=r&&t[r]<=now)--r;
t[++r]=now;p[r]=j;
if(l <= r)f[i][j]=max(f[i][j],t[l]-j*b);
}
}
for(rg j=0;j<=m;++j)
ans=max(ans,f[n][j]);
printf("%d\n",ans);
return 0;
}
股票交易 (单调队列优化DP)的更多相关文章
- 1855: [Scoi2010]股票交易[单调队列优化DP]
1855: [Scoi2010]股票交易 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1083 Solved: 519[Submit][Status] ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- 【bzoj1855】 [Scoi2010]股票交易 单调队列优化DP
上一篇blog已经讲了单调队列与单调栈的用法,本篇将讲述如何借助单调队列优化dp. 我先丢一道题:bzoj1855 此题不难想出O(n^4)做法,我们用f[i][j]表示第i天手中持有j只股票时,所赚 ...
- SCOI 股票交易 单调队列优化dp
这道题 我很蒙.....首先依照搞单调队列优化dp的一般思路 先写出状态转移方程 在想法子去优化 这个题目中说道w就是这一天要是进行操作就是从前w-1天转移而来因为之前的w天不允许有操作!就是与这些天 ...
- bzoj1855: [Scoi2010]股票交易 单调队列优化dp ||HDU 3401
这道题就是典型的单调队列优化dp了 很明显状态转移的方式有三种 1.前一天不买不卖: dp[i][j]=max(dp[i-1][j],dp[i][j]) 2.前i-W-1天买进一些股: dp[i][j ...
- LUOGU P2569 [SCOI2010]股票交易(单调队列优化dp)
传送门 解题思路 不难想一个\(O(n^3)\)的\(dp\),设\(f_{i,j}\)表示第\(i\)天,手上有\(j\)股的最大收益,因为这个\(dp\)具有单调性,所以\(f_i\)可以贪心的直 ...
- BZOJ 1855 股票交易 - 单调队列优化dp
传送门 题目分析: \(f[i][j]\)表示第i天,手中拥有j份股票的最优利润. 如果不买也不卖,那么\[f[i][j] = f[i-1][j]\] 如果买入,那么\[f[i][j] = max\{ ...
- BZOJ1855 股票交易 单调队列优化 DP
描述 某位蒟佬要买股票, 他神奇地能够预测接下来 T 天的 每天的股票购买价格 ap, 股票出售价格 bp, 以及某日购买股票的上限 as, 某日出售股票上限 bs, 并且每次股票交 ♂ 易 ( 购 ...
- 股票交易——单调队列优化DP
题目描述 思路 蒟蒻还是太弱了,,就想到半个方程就GG了,至于什么单调队列就更想不到了. $f[i][j]$表示第$i天有j$张股票的最大收益. 那么有四种选择: 不买股票:$f[i][j]=max( ...
- 2018.09.10 bzoj1855: [Scoi2010]股票交易(单调队列优化dp)
传送门 单调队列优化dp好题. 有一个很明显的状态设置是f[i][j]表示前i天完剩下了j分股票的最优值. 显然f[i][j]可以从f[i-w-1][k]转移过来. 方程很好推啊. 对于j<kj ...
随机推荐
- InfluxDB安装使用
influxdb简介 启动步骤 服务启停:sudo service influxdb start/stop/restart 安装过程: 1.增加yum源 cat <<EOF | sud ...
- 转: Github上关于iOS的各种开源项目集合
https://blog.csdn.net/jiashaoying/article/details/79079500 下拉刷新 EGOTableViewPullRefresh - 最早的下拉刷新控件. ...
- Visual Studio使用技巧 +谷歌浏览器使用技巧总结
一.总结下visual studio常用的使用技巧,有助于提高效率: 1.给代码行打标记: ctrl + K :给行打标记:ctrl + K + N:切换标记,即使当前页关闭了,也可以适用此快捷键快 ...
- Memcache和Redis复习总结
Memcache Memcache是一个高性能的分布式的内存对象缓存系统,主要是用来缓存从MySQL数据库中查询的数据,减少对mysql数据库的压力. Memcache的工作流程: 当用户发生一个动态 ...
- VUE Right-hand side of ‘instanceof’ is not an object 解决方案
这里要注意一下, props之前没注意写成了 props: { wrd: '', sname:'zs' }, 这样是不能被解析成object的,所以一定要写的更具体一点 ...
- 十六、简单配置jenkins执行本地的robotframework项目
A.前期准备: 1.登录jenkins 2.系统管理-插件管理-高级-上传插件(http://mirrors.jenkins-ci.org/plugins/robot/,中选择一个版本的插件下载至本地 ...
- Celery定时任务|计划任务
适用场景几点几分执行特定的任务 定时任务 配置这个无需多说了和上篇文章一样 任务函数 硬菜来了 添加任务时候的写法 第一种: from celery_task.order_task import or ...
- robot framework :List Variables-List变量及其用法
[转自:https://blog.csdn.net/yezibang/article/details/52692342] 这一讲我们重点来介绍List Variables-List变量及其用法. 一. ...
- mooc-IDEA 使用界面--001
IntelliJ IDEA 快捷键应用小结 1.Ctrl+E : 打开最近所有浏览过的文件 2.Ctrl+Shift+E :打开最近所有编辑修改过的文件 3.ctrl+shift+Backspace ...
- [Python3 练习] 006 汉诺塔2 非递归解法
题目:汉诺塔 II 接上一篇 [Python3 练习] 005 汉诺塔1 递归解法 这次不使用递归 不限定层数 (1) 解决方式 利用"二进制" (2) 具体说明 统一起见 我把左 ...