基本形式

\[
\max(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T)
\]

证明

不提供数学证明。

简要讲一下抽象理解伪证:

考虑从大到小排名为 \(i\) 的数,这个数会作为集合 \(T\) 的最小值出现时,那么 \(T\) 剩下的所有值都是从大于它的数中选取的。那么选取方案就是 \(\binom{i-1}{|T|-1}\)。

如果 \(i=1\),也就是 \(a_i = \max(S)\),那么它只会被加上 \(1\) 次。

如果 \(i>1\),那么它一共会被算 \(\sum\limits_{2\not\mid j, j=1}^{i-1} \binom{i-1}{j-1} - \sum\limits_{2\mid j, j=2}^{i-1}\binom{i-1}{j-1}\)。根据组合数的常识,这个东西在 \(i-1>0\) 的时候答案为 \(0\)。

综上所述,\(\max(S) = \sum\limits_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T)\) 成立。证毕。

扩展1

\[
\min(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\max(T)
\]

显然。

推广

令 \(\max_k(S)\) 表示 \(S\) 中的第 \(k\) 大的值。


\[
\max\ _{k}(S) = \sum_{T\subseteq S, |T| \geq k} (-1)^{|T|-k}\binom {|T|-1}{k-1} \min(T)
\]

证明

类似于基本形式。

因为 \(|T|\geq k\),所以 \(\min(T) \leq \max_k(S)\)。

对于从大到小排列的第 \(i\) 个数,同基本形式,这个数会作为集合 \(T\) 的最小值出现时,那么 \(T\) 剩下的所有值都是从大于它的数中选取的。那么选取方案就是 \(\binom{i-1}{|T|-1}\)。

如果 \(i=k\),那么它只会被计算 \(1\) 次,即 \(T = \{x\mid x\geq a_i\}\) 时,同时 \(\binom{|T|-1}{k-1} = 1\)。

如果 \(i > k\),那么如上文所述,它会作为大小为 \(|T|\) 的集合出现的次数为 \(\binom{i-1}{|T|-1}\)。每一次出现会被计算 \(\binom{|T|-1}{k-1}\) 次。所以它作为大小为 \(|T|\) 的集合出现的总贡献为 \(\binom{i-1}{|T|-1}\binom{|T|-1}{k-1} = \binom{i-1}{k-1}\binom{i-k}{|T|-k}\)。所以 \(i\) 的总贡献为 \(\sum\limits_{2\not\mid j, j=k}^{i-1} \binom{i-1}{k-1}\binom{i-k}{j-k} - \sum\limits_{2\mid j, j=2}^{i-1}\binom{i-1}{k-1}\binom{i-k}{j-k} = \binom{i-1}{k-1}(\sum\limits_{2\not\mid j, j=k}^{i-1} \binom{i-k}{j-k} - \sum\limits_{2\mid j, j=2}^{i-1}\binom{i-k}{j-k})\)。同样的,根据组合数的常识,\(\sum\limits_{2\not\mid j, j=k}^{i-1} \binom{i-k}{j-k} - \sum\limits_{2\mid j, j=2}^{i-1}\binom{i-k}{j-k}\) 这个东西只有在 \(i-k=0\) 时才为 \(1\),否则为 \(0\)。

应用1

常用的应用比如说:有 \(n\) 个变量,每个变量出现的概率为 \(p\)。问每一个变量都出现的期望时间。

不妨设每一个变量出现的时间为 \(t_i\),那么全部出现的概率可以表示为 \(t\) 的最大值。至少出现一个就是 \(t\) 的最小值。

那么根据 MinMax​ 容斥的一般形式:
\[
\max(S) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}\min(T)
\]
同时,根据期望的线性性质,我们也有:
\[
E(\max(S)) = \sum_{T\subseteq S, T \neq \varnothing} (-1)^{|T|-1}E(\min(T))
\]
而 \(E(\min(T))\) 显然很好求解。(显然是 \(\frac 1p\) 对吧

所以这个问题就解决了。

题目

HDU - 4336 Card Collector 题解

bzoj4036 [HAOI2015]按位或 题解

P4707 重返现世 题解

loj2542 「PKUWC2018」随机游走 题解

MinMax 容斥 学习笔记的更多相关文章

  1. min-max容斥学习笔记

    min-max容斥学习笔记 前置知识 二项式反演 \[ f(n)=\sum_{i=0}^n\binom{n}{i}g(i)\Leftrightarrow g(n)=\sum_{i=0}^n(-1)^{ ...

  2. [总结] Min-Max容斥学习笔记

    min-max 容斥 给定集合 \(S\) ,设 \(\max(S)\) 为 \(S\) 中的最大值,\(\min(S)\) 为 \(S\) 中的最小值,则: \[\max(S)=\sum_{T\in ...

  3. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

  4. [学习笔记]min-max容斥

    [Learning]min-max容斥以及推广 min-max容斥 就是max(a,b)=min(a)+min(b)-min(a,b) max(a,b,c)=a+b+c-min(a,b)-min(a, ...

  5. 【学习笔记】Min-max 容斥

    经常和概率期望题相结合. 对于全序集合 \(S\),有: \[\max S=\sum\limits_{T\subseteq S,T\not=\varnothing}(-1)^{\vert T\vert ...

  6. UOJ#449. 【集训队作业2018】喂鸽子 min-max容斥,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html 题解 设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下. ...

  7. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  8. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  9. 【LOJ#2542】[PKUWC2018]随机游走(min-max容斥,动态规划)

    [LOJ#2542][PKUWC2018]随机游走(min-max容斥,动态规划) 题面 LOJ 题解 很明显,要求的东西可以很容易的进行\(min-max\)容斥,那么转为求集合的\(min\). ...

随机推荐

  1. 如何删除发布服务器distribution

    在建立发布服务器后自动生成distribution数据库为系统数据库,drop无法删除,实际删除方法如下:在“对象资源管理器”-“复制”上点击右键,选择“禁用发布和分发”,依次执行即可完成该系统数据库 ...

  2. Oracle dmp文件(表)导入与导出

    dmp文件是作为oracle导入和导出表使用的文件格式dmp文件导出dmp文件导出用的比较多的一般是三种,他们分别是:1.导出整个数据库实例下的所有数据2.导出指定用户的所有表3.导出指定表. 打开命 ...

  3. spring mvc中的@Entity是什么意思?

    @Entitypublic Class JavaBean{}标注该类为实体类.

  4. sql select语句详解

    先group by 后  order by SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]    * | expression [ AS ...

  5. LintCode之合并排序数组II

    题目描述: 分析:题目的意思是把数组A和数组B合并到数组A中,且数组A有足够的空间容纳A和B的元素,合并后的数组依然是有序的. 我的代码: public class Solution { /* * @ ...

  6. reuseaddr和点对点聊天

    解决绑定失败 在测试时,经常会出现绑定错误,bind error: Address already in use 这里只要指定一下socket的reuseaddr属性即可解决 int on=1; if ...

  7. python操作mysql之增删改查

    [insert] import MySQLdb conn = MySQLdb.connect(","08day5" ) cur = conn.cursor() #把数据放 ...

  8. vc code 一个非常不错的插件

    https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer 这个是地址,前提下是安装了vc ...

  9. MYSQL 的七种join

    建表 在这里呢我们先来建立两张有外键关联的张表. CREATE DATABASE db0206; USE db0206; CREATE TABLE `db0206`.`tbl_dept`( `id` ...

  10. ‘’‘安装PyMouse,个人日志'''

    管理员启动CMD 1.直接pip install pymouse,成功安装, 2.安装PyHook: https://www.lfd.uci.edu/~gohlke/pythonlibs/ (向下滑动 ...