Python魔法函数与两比特量子系统模拟
技术背景
本文主要涵盖两个领域的知识点:python的魔法函数和量子计算模拟,我们可以通过一个实际的案例来先审视一下这两个需求是如何被结合起来的。
量子计算模拟背景
ProjectQ是一个非常优雅的开源量子计算编程框架,其原作者是来自与瑞士联邦理工的博士Damian和Thomas。该量子计算编程框架是一个从量子计算应用->量子线路编译->哈密顿量模拟->量子计算模拟->量子硬件API对接都有相应实现的、非常全面的量子计算编程框架。其开源地址为:https://github.com/ProjectQ-Framework/ProjectQ,支持使用pip进行安装:python3 -m pip install projectq --upgrade。
下面来看一个例子,关于如何使用projectq进行量子计算的模拟:
[dechin@dechin-manjaro simulator]$ ipython
Python 3.8.5 (default, Sep 4 2020, 07:30:14)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: from projectq import MainEngine
In [2]: from projectq.ops import X
In [3]: eng = MainEngine()
In [4]: qubits = eng.allocate_qureg(2)
In [5]: X | qubits[0]
In [6]: from projectq.ops import CX
In [7]: CX | (qubits[0], qubits[1])
In [8]: eng.flush()
In [9]: print (eng.backend.cheat()[1])
[0j, 0j, 0j, (1+0j)]
在这个案例中,我们一共分配了2个量子比特,这2个比特的初始状态都是\(\left|0\right>\)态,对应于projectq输出的amplitude矢量应为[1, 0, 0, 0]。这个矢量中的4个元素,分别对应00,01,10,11这四个量子态可能出现的概率幅,如果需要计算某一个态被测量所出现的概率的话,需要对其进行取模平方操作:
\]
注意概率幅是一个复数(Complex Number),因此需要取厄米共轭之后再进行点乘操作。
那么回到上述projectq的使用案例,这个案例在分配了两个比特之后,对其中的第一个比特执行了泡利矩阵\(\sigma^X\)操作,然后又执行了一个纠缠门操作CX。这里CX(i,j)量子门操作对应的操作为:如果量子比特i处于\(\left|0\right>\)态,不进行任何的操作;但是如果量子比特i出于\(\left|1\right>\)态,则对量子比特j执行取反操作,也就是说,如果原来j是\(\left|0\right>\)就会变成\(\left|1\right>\),如果原来j是\(\left|1\right>\)就会变成\(\left|0\right>\)。这就是量子纠缠在量子计算中的作用,而多比特的门操作在实际的硬件体系中的高质量实现,目前依旧是一大难题。而量子叠加特性就体现在,一个量子比特可能处于\(\left|0\right>\)态,也可能处于\(\left|1\right>\)态,还有可能处在\(\left|0\right>\)和\(\left|1\right>\)的中间态,这种中间态会以上述提到的概率幅的形式来对\(\left|0\right>\)和\(\left|1\right>\)进行划分:
P(1)=(a_1+b_1i)\cdot(a_1-b_1i)
\]
这些的概率幅就可以用一个矢量的形式组织起来:
\]
最终这个矢量的元素个数会随着比特数的增加而指数增长,当比特数增长到41时,所需要存储的内存空间需要32TB以上!要注意的是,因为计算过程中需要将所有的概率幅加载到内存中,所以这里区别于硬盘存储空间,单指内存就需要到32TB的大小!因此,使用经典计算机去模拟量子计算,其实是一种非常消耗资源的手段。当然,量子计算模拟器依然有其研究的价值,在现阶段量子芯片规模和质量无法提升的状态下,模拟器就起到了重要的作用。
Python的魔法函数实现
如果读者需要了解详细全面Python的魔法函数的实现方案,可以从本文的参考链接中获取两篇不错的文章。这里我们仅针对上述projectq的代码用例中所可能使用到的部分功能:__or__和__str__,并且可以针对其进行一个简单的复现。
Python的魔法函数可用于定义一个类(class)的特殊运算算符,如:类的加减乘除等,在引入魔法函数之后,就不需要单独对类中的元素进行操作,而可以用魔法函数对操作进行封装。最后的效果,我们可以直接在代码中使用操作符对不同的类进行操作,比如可以自定义class1 + class2这样的二元操作算符。在本章节我们不详细展开介绍,可以参考下述的具体使用示例或者参考链接中的博文。
量子态定义及实现
根据第一个章节中对量子态矢量的介绍,这里我们可以实现一个简单的量子态的类,我们可以仅考虑两个量子比特的简单系统:
# QubitPair.py
import numpy as np
class QubitPair:
def __init__(self):
self.state = np.array([1, 0, 0, 0], dtype=complex)
def __str__(self):
return str(self.state)
这个量子态的类的定义非常简单,就是一个4×1的矩阵。需要补充说明的是,这里我们定义了一个__str__(self)的魔法函数,该函数主要用于打印类的字符串表示,如我们这里直接将量子态矢量转化成str格式之后进行输出。那么我们如果去print一个自定义的QubitPair类的话,就会展示当前类所对应的概率幅的字符串表示。
量子门操作定义及实现
关于量子门操作,我们可以将其视作作用在量子态矢量上的矩阵,这里我们可以先展示定义好的门操作的Python类再对其进行展开说明:
# Operator.py
import numpy as np
class QubitOperator:
"""Pauli rotations and entanglement on qubit-pair"""
def __init__(self, operation=None, theta=0, index=0):
self.index = index
self.name = operation
paulix = np.array([[0, 1], [1, 0]], dtype=complex)
pauliy = np.array([[0, -1j], [1j, 0]], dtype=complex)
pauliz = np.array([[1, 0], [0, -1]], dtype=complex)
cnot = np.array([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0]])
if operation == 'X' or operation == 'Rx':
self.operation = np.cos(theta/2)*np.identity(2)-1j*np.sin(theta/2)*paulix
elif operation == 'Y' or operation == 'Ry':
self.operation = np.cos(theta/2)*np.identity(2)-1j*np.sin(theta/2)*pauliy
elif operation == 'Z' or operation == 'Rz':
self.operation = np.cos(theta/2)*np.identity(2)-1j*np.sin(theta/2)*pauliz
elif operation == 'CX' or operation == 'CNOT':
self.operation = cnot
def __or__(self, qubitpair):
if self.name == 'CX' or self.name == 'CNOT':
qubitpair.state = np.dot(self.operation, qubitpair.state)
return None
elif self.index == 0:
operation = np.kron(self.operation, np.identity(2))
else:
operation = np.kron(np.identity(2), self.operation)
qubitpair.state = np.dot(operation, qubitpair.state)
单位矩阵与泡利矩阵的定义
这些是基本的泡利矩阵,这三个两能级体系的泡利矩阵具有非常好的物理性质,如都是酉矩阵且存在特殊的对易关系等:
\begin{array}{1}
1 & 0\\
0 & 1
\end{array}
\right),
\sigma^X=\left(
\begin{array}{1}
0 & 1\\
1 & 0
\end{array}
\right),
\sigma^Y=\left(
\begin{array}{1}
0 & -i\\
i & 0
\end{array}
\right),
\sigma^Z=\left(
\begin{array}{1}
1 & 0\\
0 & -1
\end{array}
\right)
\]
矩阵指数与旋转门操作
矩阵的指数计算一般采用泰勒级数展开的方法来进行定义:
\]
这里如果我们代入上述介绍的泡利矩阵就会得到这样的结果:
\]
CX门操作的定义
在上述提到的所有的量子门操作中,CX是唯一的一个两比特量子门操作,也就是同时作用在两个量子比特上面,其矩阵形式的定义如下所示:
\begin{array}{1}
1 & 0 & 0 & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 1 & 0
\end{array}
\right)
\]
使用魔法函数__or__来实现量子门操作运算
我们首先简单谈一下为什么要用__or__这个魔法函数而不是其他的二元运算符来实现,这点跟开源库ProjectQ是同步的,理由是我们在量子力学中的运算,一般写成如下的形式:
\]
将量子态写成狄拉克符号的形式,中文称为"左矢"和"右矢",英文称之为"bra"和"ket"。因此竖线形式的定义,在形式上会更加契合量子力学的思维,当然,就算是换成其他的符号也是无可厚非的。
功能测试验证
在定义了量子态的类和量子门操作的类之后,我们可以写如下所示的一个测试脚本来测试程序的执行效果:
# TestQubits.py
from QubitPair import QubitPair
from Operator import QubitOperator
if __name__ == '__main__':
qubits = QubitPair()
print ('The initial state is: {}'.format(qubits))
QubitOperator('X', 3.1415926, 0) | qubits
print ('Applying X on the 0th qubit...')
print ('The new state is: {}'.format(qubits))
QubitOperator('CX') | qubits
print ('Applying entanglement on qubits...')
print ('The new state is: {}'.format(qubits))
QubitOperator('X', 3.1415926, 0) | qubits
print ('Applying X on the 0th qubit...')
print ('The new state is: {}'.format(qubits))
QubitOperator('CX') | qubits
print ('Applying entanglement on qubits...')
print ('The new state is: {}'.format(qubits))
这个程序的测试逻辑为:先定义一个两比特的量子系统,然后对第一个比特执行X门操作,使得其从\(\left|0\right>\)态变成\(\left|1\right>\)态,再对这两个比特执行纠缠门CX操作,观察其态的变化情况。之后再将第一个比特的状态变回\(\left|0\right>\)态,再观察作用CX的态的变化情况,执行结果如下所示:
[dechin@dechin-manjaro simulator]$ python3 TestQubits.py
The initial state is: [1.+0.j 0.+0.j 0.+0.j 0.+0.j]
Applying X on the 0th qubit...
The new state is: [2.67948966e-08+0.j 0.00000000e+00+0.j 0.00000000e+00-1.j
0.00000000e+00+0.j]
Applying entanglement on qubits...
The new state is: [2.67948966e-08+0.j 0.00000000e+00+0.j 0.00000000e+00+0.j
0.00000000e+00-1.j]
Applying X on the 0th qubit...
The new state is: [ 7.17966483e-16+0.00000000e+00j -1.00000000e+00+0.00000000e+00j
0.00000000e+00-2.67948966e-08j 0.00000000e+00-2.67948966e-08j]
Applying entanglement on qubits...
The new state is: [ 7.17966483e-16+0.00000000e+00j -1.00000000e+00+0.00000000e+00j
0.00000000e+00-2.67948966e-08j 0.00000000e+00-2.67948966e-08j]
这个结果所展示出来的数字也许比较乱,这是因为在运算过程中的计算精度不足所导致的,这里低于1e-06的数字其实我们可以认为就是0。那么我们从这个结果中可以分析总结出量子态的演变历程:
\]
这里我们就完成了基于魔法函数的量子计算模拟的过程,感兴趣的读者可以自行尝试更多的玩法,这里就不进行更多的测试了!
总结概要
本文主要尝试了用Python的魔法函数__str__来定义一个量子态,以及使用__or__来定义一个量子门操作的运算,我们附带的也简单介绍了一下量子计算模拟的一些背景知识。因为程序有简单而明确的执行逻辑,因此用程序语言的方式来定义和理解科学常识,也能够加深对科学的理解。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/magic.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/
参考链接
Python魔法函数与两比特量子系统模拟的更多相关文章
- python魔法函数__dict__和__getattr__的妙用
python魔法函数__dict__和__getattr__的妙用 __dict__ __dict__是用来存储对象属性的一个字典,其键为属性名,值为属性的值. 既然__dict__是个字典那么我们就 ...
- Python魔法函数
python中定义的以__开头和结尾的的函数.可以随意定制类的特性.魔法函数定义好之后一般不需要我们自己去调用,而是解释器会自动帮我们调用. __getitem__(self, item) 将类编程一 ...
- python魔法函数之__getattr__与__getattribute__
getattr 在访问对象的属性不存在时,调用__getattr__,如果没有定义该魔法函数会报错 class Test: def __init__(self, name, age): self.na ...
- python魔法函数(二)之__getitem__、__len__、__iter__
魔法函数会增强python类的类型,独立存在 __getitem class Company: def __init__(self, employees): self.employees = empl ...
- python魔法函数的一些疑问
看了魔法函数,有一点疑问.1中需要用self.word才能执行,而2直接用self就可以执行.而1中Word继承了int基本类型,但在__new__时并没有什么卵用.当用 Word(“123”)来实例 ...
- raindi python魔法函数(一)之__repr__与__str__
__repr__和__str__都是python中的特殊方法,都是用来输出实例对象的,如果没有定义这两个方法在打印的时候只会输出实例所在的内存地址 这种方式的输出没有可读性,并不能直观的体现实例.py ...
- python 进阶读书笔记2 -- python魔法函数
#!/usr/bin/env python# -*- coding: utf-8 -*- class student: def __init__(self, name_list): self.stud ...
- python基础-函数基本特性和用法
函数: 初中数学函数定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数.自变量x的取值 ...
- Python的魔法函数系列 __getattrbute__和__getattr__
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys __metaclass__ = type """ _ ...
随机推荐
- Android驱动学习-Eclipse安装与配置
在ubuntu系统下安装配置Eclipse软件.并且让其支持编译java程序和内核驱动程序. 1. 下载Eclipse软件. 打开官网:http://www.eclipse.org/ 点击 DOWN ...
- C语言输入字符串
首先强调一点,C语言没有字符串的概念!所谓的字符串实际上还是以数组形式保存的. 方法1 -- 通过"%s"输入 优点:简单明了,输入字符只要不大于数组长度都可以. #includ ...
- 如何定位CPU瓶颈?
CPU是通常大家最先关注的性能指标,宏观维度有核的CPU使用率,微观有函数的CPU cycle数,根据性能的模型,性能规格与CPU使用率是互相关联的,规格越高,CPU使用率越高,但是处理器的性能往往又 ...
- python之random 、os 、sys 模块
一.random模块 import random print(random.random())#(0,1)----float 大于0且小于1之间的小数 print(random.randint(1,3 ...
- 【MyBatis】MyBatis 动态 SQL
MyBatis 动态SQL if 可以根据实体类的不同取值,使用不同的 SQL 语句来进行查询. 使用动态 SQL 最常见情景是根据条件包含 where 子句的一部分. 持久层 DAO 接口: pub ...
- Docker 介绍和安装(一)
# 下载阿里云的 Centos7 的docker.repo # step 1: 安装必要的一些系统工具 sudo yum install -y yum-utils device-mapper-pers ...
- 如何跑通第一个 SQL 作业
简介: 本文由阿里巴巴技术专家周凯波(宝牛)分享,主要介绍如何跑通第一个SQL. 一.SQL的基本概念 1.SQL 分类 SQL分为四类,分别是数据查询语言(DQL).数据操纵语言(DML).数据定义 ...
- C#数组的 Length 和 Count()
C#数组的 Length 和 Count() C# 数组中 Length 表示数组项的个数,是个属性.而 Count() 也是表示项的个数,是个方法,它的值和 Length 一样.但实际上严格地说, ...
- Trollcave-suid提权
一 扫描端口 扫描开放端口:nmap -sV -sC -p- 192.168.0.149 -oA trollcave-allports 扫描敏感目录:gobuster dir -u http://19 ...
- 5V充8.4V,5V升压8.4V给电池充电的芯片电路
5V充8.4V的锂电池,需要把USB口的5V输入,升压转换成8.4V来给两串电池充电. 5V升压8.4V给锂电池充电的专门充电IC 集成了5V升压8.4V电路和充电管理电路的PL7501C 如果不需要 ...