K-近邻算法(k-Nearest Neighbor,简称kNN)采用测量不同特征值之间的距离方法进行分类,是一种常用的监督学习方法,其工作机制很简单:给定测试样本,基于某种距离亮度找出训练集中与其靠近的k个训练样本,然后基于这k个“邻居”的信息进行预测。kNN算法属于懒惰学习,此类学习技术在训练阶段仅仅是把样本保存起来,训练时间靠小为零,在收到测试样本后在进行处理,所以可知kNN算法的缺点是计算复杂度高、空间复杂度高。但其也有优点,精度高、对异常值不敏感、无数据输入设定。

  借张图来说:

当k = 1时目标点有一个class2邻居,根据kNN算法的原理,目标点也为class2。

当k = 5时目标点有两个class2邻居,有三个class1的邻居,根据其原理,目标点的类别为class2。

算法流程

总体来说,KNN分类算法包括以下4个步骤:

①准备数据,对数据进行预处理 。

②计算测试样本点(也就是待分类点)到其他每个样本点的距离。

③对每个距离进行排序,然后选择出距离最小的K个点 。

④对K个点所属的类别进行比较,根据少数服从多数的原则,将测试样本点归入在K个点中占比最高的那一类 。

算法代码

package com.top.knn;

import com.top.constants.OrderEnum;
import com.top.matrix.Matrix;
import com.top.utils.MatrixUtil; import java.util.*; /**
* @program: top-algorithm-set
* @description: KNN k-临近算法进行分类
* @author: Mr.Zhao
* @create: 2020-10-13 22:03
**/
public class KNN {
public static Matrix classify(Matrix input, Matrix dataSet, Matrix labels, int k) throws Exception {
if (dataSet.getMatrixRowCount() != labels.getMatrixRowCount()) {
throw new IllegalArgumentException("矩阵训练集与标签维度不一致");
}
if (input.getMatrixColCount() != dataSet.getMatrixColCount()) {
throw new IllegalArgumentException("待分类矩阵列数与训练集列数不一致");
}
if (dataSet.getMatrixRowCount() < k) {
throw new IllegalArgumentException("训练集样本数小于k");
}
// 归一化
int trainCount = dataSet.getMatrixRowCount();
int testCount = input.getMatrixRowCount();
Matrix trainAndTest = dataSet.splice(2, input);
Map<String, Object> normalize = MatrixUtil.normalize(trainAndTest, 0, 1);
trainAndTest = (Matrix) normalize.get("res");
dataSet = trainAndTest.subMatrix(0, trainCount, 0, trainAndTest.getMatrixColCount());
input = trainAndTest.subMatrix(0, testCount, 0, trainAndTest.getMatrixColCount()); // 获取标签信息
List<Double> labelList = new ArrayList<>();
for (int i = 0; i < labels.getMatrixRowCount(); i++) {
if (!labelList.contains(labels.getValOfIdx(i, 0))) {
labelList.add(labels.getValOfIdx(i, 0));
}
} Matrix result = new Matrix(new double[input.getMatrixRowCount()][1]);
for (int i = 0; i < input.getMatrixRowCount(); i++) {
// 求向量间的欧式距离
Matrix var1 = input.getRowOfIdx(i).extend(2, dataSet.getMatrixRowCount());
Matrix var2 = dataSet.subtract(var1);
Matrix var3 = var2.square();
Matrix var4 = var3.sumRow();
Matrix var5 = var4.pow(0.5);
// 距离矩阵合并上labels矩阵
Matrix var6 = var5.splice(1, labels);
// 将计算出的距离矩阵按照距离升序排序
var6.sort(0, OrderEnum.ASC);
// 遍历最近的k个变量
Map<Double, Integer> map = new HashMap<>();
for (int j = 0; j < k; j++) {
// 遍历标签种类数
for (Double label : labelList) {
if (var6.getValOfIdx(j, 1) == label) {
map.put(label, map.getOrDefault(label, 0) + 1);
}
}
}
result.setValue(i, 0, getKeyOfMaxValue(map));
}
return result;
} /**
* 取map中值最大的key
*
* @param map
* @return
*/
private static Double getKeyOfMaxValue(Map<Double, Integer> map) {
if (map == null)
return null;
Double keyOfMaxValue = 0.0;
Integer maxValue = 0;
for (Double key : map.keySet()) {
if (map.get(key) > maxValue) {
keyOfMaxValue = key;
maxValue = map.get(key);
}
}
return keyOfMaxValue;
} }

KNN

注:其中的矩阵方法请参考https://github.com/ineedahouse/top-algorithm-set/blob/dev/src/main/java/com/top/matrix/Matrix.java

  升降序枚举类参考https://github.com/ineedahouse/top-algorithm-set/blob/dev/src/main/java/com/top/constants/OrderEnum.java

该算法为本人github项目中的一部分,地址为https://github.com/ineedahouse/top-algorithm-set

如果对你有帮助可以点个star~

参考

《机器学习》-周志华

《机器学习实战》-Peter Harrington

K-近邻算法kNN的更多相关文章

  1. k近邻算法(KNN)

    k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...

  2. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  3. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  4. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  5. k近邻算法(knn)的c语言实现

    最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...

  6. 《机器学习实战》---第二章 k近邻算法 kNN

    下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @au ...

  7. 最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现

    k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是 ...

  8. 07.k近邻算法kNN

    1.将数据分为测试数据和预测数据 2.数据分为data和target,data是矩阵,target是向量 3.将每条data(向量)绘制在坐标系中,就得到了一系列的点 4.根据每条data的targe ...

  9. 机器学习随笔01 - k近邻算法

    算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. ...

  10. 机器学习(1)——K近邻算法

    KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...

随机推荐

  1. Python+Appium自动化测试(7)-截图方法

    一,selenium模块的两种截图方法 get_screenshot_as_file(filename) 参数filename为截图文件保存的绝对路径,如: driver.get_screenshot ...

  2. vector专题

    <C++程序设计语言(第4部分:标准库)> 31.4 容器 31.4.1 vector 31.4.1.1 vector和增长 重要知识点:vector的内存布局 vector不会在添加每个 ...

  3. Windows下CertUtil校验和编码文件

    目录 前言 CertUtil计算文件hash 计算MD2 计算MD4 计算MD5 计算SHA1 计算SHA256 计算SHA384 计算SHA512 文件base64编码 文件base64解码 文件h ...

  4. rs232转rs485

    rs232转rs485 rs232转rs485 ZLAN9223E是上海卓岚科技开发的一款先进的无源RS232转RS485转换器.具有如下优点: 支持最高达230400bps的波特率.高波特率下供电能 ...

  5. 学习go语言并完成第一个作品

    之前有使用C#写一个Windows下的发送邮件的命令行工具,方便一些脚本出现异常时向我的邮箱发送邮件提醒.但这并没有被我频繁使用,因为我的有些脚本还是在linux下面运行,因此我又有一篇文章用linu ...

  6. Golang数组和切片的区别

    大纲 数组是固定大小 切片不是动态数组,可以扩容 区别 定义方式不一样 初始化方法不一样 package main import "fmt" func main() { // -- ...

  7. centos8平台redis cluster集群添加/删除node节点(redis5.0.7)

    一,当前redis cluster的node情况: 我们的添加删除等操作都是以这个cluster作为demo cluster采用六台redis,3主3从 redis1 : ip: 172.17.0.2 ...

  8. selenium基础 --获取内容

    from time import sleep from selenium import webdriver browser = webdriver.Chrome() url = "http: ...

  9. Anderson《空气动力学基础》5th读书笔记 第5记——推导二维机翼的空气动力学系数

    机翼的受力分析图 我们知道,空气对一个物体产生的升力和阻力以及力矩源于作用在整个物体上的压力分布和剪切力分布,所以我们分析上图可知(取单位展长的机翼): 对于上表面:                 ...

  10. linux修改环境变量后无法登录

    在登陆界面按Ctrl+Alt+F1(F1~F6), 进入 tty 后登陆账号. 执行以下命令: /usr/bin/sudo /usr/bin/vi /etc/environment 将PATH的值复原 ...