推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性,比如对于人就是性别、年龄、工作、收入、喜好等,找出与这个人或物品相似的人或物,当然实际处理中参考的因子会复杂的多。

本篇文章不介绍相关数学概念,主要给出常用的相似度算法代码实现,并且同一算法有多种实现方式。

欧几里得距离

def euclidean2(v1: Vector, v2: Vector): Double = {
require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
s"=${v2.size}.") val x = v1.toArray
val y = v2.toArray euclidean(x, y)
} def euclidean(x: Array[Double], y: Array[Double]): Double = {
require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
s"=${y.length}.") math.sqrt(x.zip(y).map(p => p._1 - p._2).map(d => d * d).sum)
} def euclidean(v1: Vector, v2: Vector): Double = {
val sqdist = Vectors.sqdist(v1, v2)
math.sqrt(sqdist)
}

皮尔逊相关系数

def pearsonCorrelationSimilarity(arr1: Array[Double], arr2: Array[Double]): Double = {
require(arr1.length == arr2.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${arr1.length} and Len(y)" +
s"=${arr2.length}.") val sum_vec1 = arr1.sum
val sum_vec2 = arr2.sum val square_sum_vec1 = arr1.map(x => x * x).sum
val square_sum_vec2 = arr2.map(x => x * x).sum val zipVec = arr1.zip(arr2) val product = zipVec.map(x => x._1 * x._2).sum
val numerator = product - (sum_vec1 * sum_vec2 / arr1.length) val dominator = math.pow((square_sum_vec1 - math.pow(sum_vec1, 2) / arr1.length) * (square_sum_vec2 - math.pow(sum_vec2, 2) / arr2.length), 0.5)
if (dominator == 0) Double.NaN else numerator / (dominator * 1.0)
}

余弦相似度

/** jblas实现余弦相似度 */
def cosineSimilarity(v1: DoubleMatrix, v2: DoubleMatrix): Double = {
require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(v1)=${x.length} and Len(v2)" +
s"=${y.length}.") v1.dot(v2) / (v1.norm2() * v2.norm2())
} def cosineSimilarity(v1: Vector, v2: Vector): Double = {
require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
s"=${v2.size}.") val x = v1.toArray
val y = v2.toArray cosineSimilarity(x, y)
} def cosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
s"=${y.length}.") val member = x.zip(y).map(d => d._1 * d._2).sum val temp1 = math.sqrt(x.map(math.pow(_, 2)).sum)
val temp2 = math.sqrt(y.map(math.pow(_, 2)).sum) val denominator = temp1 * temp2
if (denominator == 0) Double.NaN else member / (denominator * 1.0)
}

修正余弦相似度

def adjustedCosineSimJblas(x: DoubleMatrix, y: DoubleMatrix): Double = {
require(x.length == y.length, s"SimilarityAlgorithms:DoubleMatrix length do not match: Len(x)=${x.length} and Len(y)" +
s"=${y.length}.") val avg = (x.sum() + y.sum()) / (x.length + y.length)
val v1 = x.sub(avg)
val v2 = y.sub(avg)
v1.dot(v2) / (v1.norm2() * v2.norm2())
} def adjustedCosineSimJblas(x: Array[Double], y: Array[Double]): Double = {
require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
s"=${y.length}.") val v1 = new DoubleMatrix(x)
val v2 = new DoubleMatrix(y) adjustedCosineSimJblas(v1, v2)
} def adjustedCosineSimilarity(v1: Vector, v2: Vector): Double = {
require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +
s"=${v2.size}.")
val x = v1.toArray
val y = v2.toArray adjustedCosineSimilarity(x, y)
} def adjustedCosineSimilarity(x: Array[Double], y: Array[Double]): Double = {
require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +
s"=${y.length}.") val avg = (x.sum + y.sum) / (x.length + y.length) val member = x.map(_ - avg).zip(y.map(_ - avg)).map(d => d._1 * d._2).sum val temp1 = math.sqrt(x.map(num => math.pow(num - avg, 2)).sum)
val temp2 = math.sqrt(y.map(num => math.pow(num - avg, 2)).sum) val denominator = temp1 * temp2
if (denominator == 0) Double.NaN else member / (denominator * 1.0)
}

大家如果在实际业务处理中有相关需求,可以根据实际场景对上述代码进行优化或改造,当然很多算法框架提供的一些算法是对这些相似度算法的封装,底层还是依赖于这一套,也能帮助大家做更好的了解。比如Spark MLlib在KMeans算法实现中,底层对欧几里得距离的计算实现。

推荐文章:
重要 | Spark分区并行度决定机制
解析SparkStreaming和Kafka集成的两种方式


关注微信公众号:大数据学习与分享,获取更对技术干货

Spark/Scala实现推荐系统中的相似度算法(欧几里得距离、皮尔逊相关系数、余弦相似度:附实现代码)的更多相关文章

  1. 推荐系统中的协同滤波算法___使用SVD

    对于推荐方法,基于内容 和 基于协同过滤 是目前的主流推荐算法,很多电子商务网站的推荐系统都是基于这两种算法的. 协同过滤 是一种基于相似性来进行推荐的算法,主要分为 基于用户的协同过滤算法 和 基于 ...

  2. 文本相似度算法——空间向量模型的余弦算法和TF-IDF

    1.信息检索中的重要发明TF-IDF TF-IDF是一种统计方法,TF-IDF的主要思想是,如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分 ...

  3. Spark Mllib里相似度度量(基于余弦相似度计算不同用户之间相似性)(图文详解)

    不多说,直接上干货! 常见的推荐算法 1.基于关系规则的推荐 2.基于内容的推荐 3.人口统计式的推荐 4.协调过滤式的推荐 协调过滤算法,是一种基于群体用户或者物品的典型推荐算法,也是目前常用的推荐 ...

  4. [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  5. SVD及其在推荐系统中的作用

    本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...

  6. elasticsearch算法之推荐系统的相似度算法(一)

    一.推荐系统简介 推荐系统主要基于对用户历史的行为数据分析处理,寻找得到用户可能感兴趣的内容,从而实现主动向用户推荐其可能感兴趣的内容: 从物品的长尾理论来看,推荐系统通过发掘用户的行为,找到用户的个 ...

  7. 相似度度量:欧氏距离与余弦相似度(Similarity Measurement Euclidean Distance Cosine Similarity)

    在<机器学习---文本特征提取之词袋模型(Machine Learning Text Feature Extraction Bag of Words)>一文中,我们通过计算文本特征向量之间 ...

  8. java算法(1)---余弦相似度计算字符串相似率

    余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据 ...

  9. Python 余弦相似度与皮尔逊相关系数 计算

    夹角余弦(Cosine) 也可以叫余弦相似度. 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异. (1)在二维空间中向量A(x1,y1)与向量B(x2,y2 ...

随机推荐

  1. git连接gitlab下载项目代码

    1.安装git 2.鼠标右键git bash here 3.命令行界面输入生成公钥命令 ssh-keygen -t rsa -C'gitlab用户名' 然后一直按enter键下一步生成公钥即可' 4. ...

  2. Docker版EKL安装记录文档

    Docker版EKL安装记录文档 拉取已下三个镜像 docker.io/logstash 7.5.2 b6518c95ed2f 6 months ago 805 MB docker.io/kibana ...

  3. HotSpot源码分析之类模型

    HotSpot采用了OOP-Klass模型描述Java的类和对象.Klass模型采用Klass类及相关子类的对象来描述具体的Java类.一般HotSpot JVM 在加载Java的Class 文件时, ...

  4. 好学易懂 从零开始的插头DP(一)

    好学易懂 从零开始的插头DP(一) 写在前面 这是一篇,以蒟蒻视角展开的梳理总结.更改了一些顺序,变化了一些细节.方便蒟蒻学习理解(起码本蒟蒻是这样).大佬们可以直接看其它大佬的博客,可以学的更快. ...

  5. [原题复现+审计][BJDCTF2020]Mark loves cat($$导致的变量覆盖问题)

    简介  原题复现:https://gitee.com/xiaohua1998/BJDCTF2020_January  考察知识点:$$导致的变量覆盖问题  线上平台:https://buuoj.cn( ...

  6. phpmyadmin远程代码执行漏洞(CVE-2016-5734)

    简介 环境复现:https://github.com/vulhub/vulhub 线上平台:榆林学院内可使用协会内部的网络安全实验平台 phpMyAdmin是一套开源的.基于Web的MySQL数据库管 ...

  7. mysql case when语句的使用

    case具有两种格式.简单case函数和case搜索函数. 简单函数 CASE [col_name] WHEN [value1] THEN [result1]-ELSE [default] END 搜 ...

  8. c# 调用Go 动态库

    [StructLayout(LayoutKind.Sequential)] public struct GoMem { public IntPtr data; public UInt64 len; p ...

  9. CDR征稿-CorelDRAW征文活动开始啦!

    学习平面设计的小伙伴对CorelDRAW一定不陌生,CorelDRAW和Photoshop.illustrator以及 InDesign是做设计必备的四款工具.如果您是CorelDRAW专家.培训讲师 ...

  10. 如何用Vegas完成视频编辑中的自动跟踪换图

    Vegas作为一款专业的视频剪辑软件,剪辑速度快捷,拥有各种实用工具和特效,同样也可以为用户实现视频换图的需求.今天小编就为大家讲解,如何利用Vegas自动跟踪进行换图,让视频能够更加便捷的呈现. 本 ...