[LeetCode] 5. Longest Palindromic Substring 最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
Example 1:
Input: "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example 2:
Input: "cbbd"
Output: "bb"
这道题让我们求最长回文子串,首先说下什么是回文串,就是正读反读都一样的字符串,比如 "bob", "level", "noon" 等等。那么最长回文子串就是在一个字符串中的那个最长的回文子串。LeetCode 中关于回文串的题共有五道,除了这道,其他的四道为 Palindrome Number,Validate Palindrome,Palindrome Partitioning,Palindrome Partitioning II,我们知道传统的验证回文串的方法就是两个两个的对称验证是否相等,那么对于找回文字串的问题,就要以每一个字符为中心,像两边扩散来寻找回文串,这个算法的时间复杂度是 O(n*n),可以通过 OJ,就是要注意奇偶情况,由于回文串的长度可奇可偶,比如 "bob" 是奇数形式的回文,"noon" 就是偶数形式的回文,两种形式的回文都要搜索,对于奇数形式的,我们就从遍历到的位置为中心,向两边进行扩散,对于偶数情况,我们就把当前位置和下一个位置当作偶数行回文的最中间两个字符,然后向两边进行搜索,参见代码如下:
解法一:
class Solution {
public:
string longestPalindrome(string s) {
if (s.size() < ) return s;
int n = s.size(), maxLen = , start = ;
for (int i = ; i < n - ; ++i) {
searchPalindrome(s, i, i, start, maxLen);
searchPalindrome(s, i, i + , start, maxLen);
}
return s.substr(start, maxLen);
}
void searchPalindrome(string s, int left, int right, int& start, int& maxLen) {
while (left >= && right < s.size() && s[left] == s[right]) {
--left; ++right;
}
if (maxLen < right - left - ) {
start = left + ;
maxLen = right - left - ;
}
}
};
我们也可以不使用子函数,直接在一个函数中搞定,我们还是要定义两个变量 start 和 maxLen,分别表示最长回文子串的起点跟长度,在遍历s中的字符的时候,我们首先判断剩余的字符数是否小于等于 maxLen 的一半,是的话表明就算从当前到末尾到子串是半个回文串,那么整个回文串长度最多也就是 maxLen,既然 maxLen 无法再变长了,计算这些就没有意义,直接在当前位置 break 掉就行了。否则就要继续判断,我们用两个变量 left 和 right 分别指向当前位置,然后我们先要做的是向右遍历跳过重复项,这个操作很必要,比如对于 noon,i在第一个o的位置,如果我们以o为最中心往两边扩散,是无法得到长度为4的回文串的,只有先跳过重复,此时left指向第一个o,right指向第二个o,然后再向两边扩散。而对于 bob,i在第一个o的位置时,无法向右跳过重复,此时 left 和 right 同时指向o,再向两边扩散也是正确的,所以可以同时处理奇数和偶数的回文串,之后的操作就是更新 maxLen 和 start 了,跟上面的操作一样,参见代码如下:
解法二:
class Solution {
public:
string longestPalindrome(string s) {
if (s.size() < ) return s;
int n = s.size(), maxLen = , start = ;
for (int i = ; i < n;) {
if (n - i <= maxLen / ) break;
int left = i, right = i;
while (right < n - && s[right + ] == s[right]) ++right;
i = right + ;
while (right < n - && left > && s[right + ] == s[left - ]) {
++right; --left;
}
if (maxLen < right - left + ) {
maxLen = right - left + ;
start = left;
}
}
return s.substr(start, maxLen);
}
};
此题还可以用动态规划 Dynamic Programming 来解,根 Palindrome Partitioning II 的解法很类似,我们维护一个二维数组 dp,其中 dp[i][j] 表示字符串区间 [i, j] 是否为回文串,当 i = j 时,只有一个字符,肯定是回文串,如果 i = j + 1,说明是相邻字符,此时需要判断 s[i] 是否等于 s[j],如果i和j不相邻,即 i - j >= 2 时,除了判断 s[i] 和 s[j] 相等之外,dp[i + 1][j - 1] 若为真,就是回文串,通过以上分析,可以写出递推式如下:
dp[i, j] = 1 if i == j
= s[i] == s[j] if j = i + 1
= s[i] == s[j] && dp[i + 1][j - 1] if j > i + 1
这里有个有趣的现象就是如果我把下面的代码中的二维数组由 int 改为 vector<vector<int>> 后,就会超时,这说明 int 型的二维数组访问执行速度完爆 std 的 vector 啊,所以以后尽可能的还是用最原始的数据类型吧。
解法三:
class Solution {
public:
string longestPalindrome(string s) {
if (s.empty()) return "";
int n = s.size(), dp[n][n] = {}, left = , len = ;
for (int i = ; i < n; ++i) {
dp[i][i] = ;
for (int j = ; j < i; ++j) {
dp[j][i] = (s[i] == s[j] && (i - j < || dp[j + ][i - ]));
if (dp[j][i] && len < i - j + ) {
len = i - j + ;
left = j;
}
}
}
return s.substr(left, len);
}
};
最后要来的就是大名鼎鼎的马拉车算法 Manacher's Algorithm,这个算法的神奇之处在于将时间复杂度提升到了 O(n) 这种逆天的地步,而算法本身也设计的很巧妙,很值得我们掌握,参见我另一篇专门介绍马拉车算法的博客 Manacher's Algorithm 马拉车算法,代码实现如下:
解法四:
class Solution {
public:
string longestPalindrome(string s) {
string t ="$#";
for (int i = ; i < s.size(); ++i) {
t += s[i];
t += '#';
}
int p[t.size()] = {}, id = , mx = , resId = , resMx = ;
for (int i = ; i < t.size(); ++i) {
p[i] = mx > i ? min(p[ * id - i], mx - i) : ;
while (t[i + p[i]] == t[i - p[i]]) ++p[i];
if (mx < i + p[i]) {
mx = i + p[i];
id = i;
}
if (resMx < p[i]) {
resMx = p[i];
resId = i;
}
}
return s.substr((resId - resMx) / , resMx - );
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/5
类似题目:
Longest Palindromic Subsequence
参考资料:
https://leetcode.com/problems/longest-palindromic-substring/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 5. Longest Palindromic Substring 最长回文子串的更多相关文章
- Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)
Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...
- [leetcode]5. Longest Palindromic Substring最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 【LeetCode】5. Longest Palindromic Substring 最长回文子串
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...
- LeetCode:Longest Palindromic Substring 最长回文子串
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- lintcode :Longest Palindromic Substring 最长回文子串
题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 1. Longest Palindromic Substring ( 最长回文子串 )
要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...
- 【翻译】Longest Palindromic Substring 最长回文子串
原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...
- 005 Longest Palindromic Substring 最长回文子串
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
随机推荐
- 解决原生javascript 缺少insertAfter的功能,非Jquery方法
在现有的方法后插入一个新元素,你可能会想:既然有insertBefore方法,是不是也有一个相应的insertAfter()方法.很可惜,DOM没有提供方法.下面编写insertAfter函数,虽然D ...
- webstorm关闭烦人的eslint语法检查
使用了eslint语法检查之后发现JS代码里面处处是红线,通过右键菜单中的fix eslint problems选项又会发现页面代码的格式被eslint换行得不分青红皂白,索性关闭exlint语法检查 ...
- 初探云原生应用管理(一): Helm 与 App Hub
系列介绍:初探云原生应用管理系列是介绍如何用云原生技术来构建.测试.部署.和管理应用的内容专辑.做这个系列的初衷是为了推广云原生应用管理的最佳实践,以及传播开源标准和知识.通过这个系列,希望帮 ...
- F#周报2019年第18期
新闻 FableConf 2019开始征集提案 2019理事会选举 如同DSL一般的Elmish封装器fable-elmish,可以创建控制台或者终端界面 介绍VS Code的远程开发 F#(.NET ...
- yii2.0的学习之旅(二)
前言:上一次我们简单认识了一下yii2.0安装,模型基本(增,删,改,查)操作 一.前后台数据交互 *如果你觉得默认的top样式太丑,可以这样关掉* *底部也可以这样关掉* (1)mvc合作操作数据 ...
- python语法01
在某.py文件中调用其他.py文件中的内容. 全局变量的使用. 线程的使用. if name == 'main': 的作用 新建两个python脚本文件 f1File.py ""& ...
- 命令 docker rm | docker rmi | docker prune 的差异
区别: docker rm : 删除一个或多个 容器 docker rmi : 删除一个或多个 镜像 docker prune : 用来删除不再使用的 docker 对象 一.docker rm 命令 ...
- SpringBoot结合策略模式实战套路
1. SpringBoot结合策略模式实战套路 1.1. 前言 我们都知道设计模式好,可以让我们的代码更具可读性,扩展性,易于维护,但大部分程序猿一开始都学过至少一遍设计模式吧,实战中不知用到了几成. ...
- Mysql EF Core 快速构建 Web Api
(1)首先创建一个.net core web api web项目; (2)因为我们使用的是ef连接mysql数据库,通过NuGet安装MySql.Data.EntityFrameworkCore,以来 ...
- 技能篇丨FineCMS 5.0.10 多个漏洞详细分析
今天是一篇关于技能提升的文章,文章中的CMS是FineCMS,版本是5.0.10版本的几个漏洞分析,主要内容是介绍漏洞修补前和修补后的分析过程,帮助大家快速掌握该技能. 注:篇幅较长,阅读用时约7分钟 ...