1. [IOI2002]任务安排

    ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比

    时间限制:1 s 内存限制:128 MB

    N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

    例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

    输入

    第一行是N(1<=N<=5000)。

    第二行是S(0<=S<=50)。

    下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

    输出

    一个数,最小的总费用。

    输入样例

    5

    1

    1 3

    3 2

    4 3

    2 3

    1 4

    输出样例

    153
/*
DP.
n^2做法.
这题没想出来.
正解要考虑后效性.
因为当我们选择一个任务作为开始的时候
它必然会对后面的决策产生影响.
所以我们先把后效性的贡献算出来累加进去.
方程长这样
f[i]=min(f[i],f[j-1]+(sumw[i]-sumw[j-1])*sumt[i]+S*(sumw[n]-sumw[j-1]))
sumw表示前缀F[i],sumt表示前缀t[i].
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXN 5010
using namespace std;
int n,S,F[MAXN],f[MAXN],sumt[MAXN],sumw[MAXN];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void slove()
{
for(int i=1;i<=n;i++) f[i]=1e9;
f[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
f[i]=min(f[i],f[j-1]+(sumw[i]-sumw[j-1])*sumt[i]+S*(sumw[n]-sumw[j-1]));
}
printf("%d",f[n]);
}
int main()
{
freopen("batch.in","r",stdin);
freopen("batch.out","w",stdout);
int x;
n=read(),S=read();
for(int i=1;i<=n;i++)
{
x=read(),F[i]=read();
sumt[i]=sumt[i-1]+x;
sumw[i]=sumw[i-1]+F[i];
}
slove();
return 0;
}

Cogs 376. [IOI2002]任务安排(后效性DP)的更多相关文章

  1. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  2. CF24D Broken robot 后效性DP

    这题咕了好久..... 设$f[i][j]$表示从$(i,j)$到最后一行的期望步数: 则有 $ f[i][1]=\frac{1}{3}(f[i][1]+f[i][2]+f[i+1][1])+1$ $ ...

  3. 『Broken Robot 后效性dp 高斯消元』

    Broken Robot Description 你作为礼物收到一个非常聪明的机器人走在矩形板上.不幸的是,你明白它已经破碎并且行为相当奇怪(随机).该板由N行和M列单元组成.机器人最初位于第i行和第 ...

  4. luogu 4042 有后效性的dp

    存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...

  5. Educational Codeforces Round 62 E 局部dp + 定义状态取消后效性

    https://codeforces.com/contest/1140/problem/E 局部dp + 定义状态取消后效性 题意 给你一个某些位置可以改变的字符串,假如字符串存在回文子串,那么这个字 ...

  6. poj 2228 Naptime(DP的后效性处理)

    \(Naptime\) \(solution:\) 这道题不做多讲,它和很多区间DP的套路一致,但是这一道题它不允许断环成链,会超时.但是我们发现如果这只奶牛跨夜休息那么它在不跨夜的二十四个小时里一定 ...

  7. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

  8. Codeforces - 24D 有后效性的DP处理

    题意:在n*m的网格中,某个物体初始置于点(x,y),每一步行动都会等概率地停留在原地/往左/往右/往下走,求走到最后一行的的步数的数学期望,其中n,m<1000 lyd告诉我们这种题目要倒推处 ...

  9. 0x55 环形与后效性问题

    poj2228 分第一天是否熟睡DP两次 #include<cstdio> #include<iostream> #include<cstring> #includ ...

随机推荐

  1. LOJ3146 APIO2019路灯(cdq分治+树状数组)

    每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...

  2. 微信公众号 分享接口 签名通过 分享无效果(JSSDK自定义分享接口的策略调整)

    为规范自定义分享链接功能在网页上的使用,自2017年4月25日起,JSSDK“分享到朋友圈”及“发送给朋友”接口,自定义的分享链接,其域名或路径必须与当前页面对应的公众号JS安全域名一致,否则将调用失 ...

  3. bootstrap-datetimepicker 日期控件起始时间和结束时间

    项目中经常会用到起止时间,如下图: 需要引用以下几个文件: <link href="~/lib/bootstrap/dist/css/bootstrap.min.css" r ...

  4. require.context实现前端工程自动化

    require.context是什么 一个webpack的api,通过执行require.context函数获取一个特定的上下文,主要用来实现自动化导入模块,在前端工程中,如果遇到从一个文件夹引入很多 ...

  5. Java中map接口 遍历map

    转自:https://www.cnblogs.com/wjk921/p/4918442.html java集合框架用于存储数据,也被称为集合类 位于java.util包下 java.util包下常用接 ...

  6. 学习python的日常5

    形如__xxx__的变量或者函数名,在python中是有特殊用途的,例如__slots__是为了绑定属性的名称, __len()__方法是为了让class作用于len()函数,很多这样的函数都可以帮忙 ...

  7. CentOS7.x-lnmp环境下安装Discuz论坛

    1.安装lnmp.这里采用一键安装的包 yum -y install wget wget http://soft.vpser.net/lnmp/lnmp1.6-full.tar.gz 2.加压安装ln ...

  8. HTML&CSS基础-伪元素选择器

    HTML&CSS基础-伪元素选择器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.html源代码 <!DOCTYPE html> <html> ...

  9. MYSQL中的乐观锁实现(MVCC)简析

    https://segmentfault.com/a/1190000009374567#articleHeader2 什么是MVCC MVCC即Multi-Version Concurrency Co ...

  10. Web前端面试图

    文章:记一次腾讯微信面试 先是看简历上写的项目经验,问一上些项目上的问题,比如如何编写 js-sdk, 如何去修改 weui 库,遇到最大的难题是什么及如何去解决的. 数组去重的方法有哪些? 如何判断 ...