1. [IOI2002]任务安排

    ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比

    时间限制:1 s 内存限制:128 MB

    N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

    例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

    输入

    第一行是N(1<=N<=5000)。

    第二行是S(0<=S<=50)。

    下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

    输出

    一个数,最小的总费用。

    输入样例

    5

    1

    1 3

    3 2

    4 3

    2 3

    1 4

    输出样例

    153
/*
DP.
n^2做法.
这题没想出来.
正解要考虑后效性.
因为当我们选择一个任务作为开始的时候
它必然会对后面的决策产生影响.
所以我们先把后效性的贡献算出来累加进去.
方程长这样
f[i]=min(f[i],f[j-1]+(sumw[i]-sumw[j-1])*sumt[i]+S*(sumw[n]-sumw[j-1]))
sumw表示前缀F[i],sumt表示前缀t[i].
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#define MAXN 5010
using namespace std;
int n,S,F[MAXN],f[MAXN],sumt[MAXN],sumw[MAXN];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void slove()
{
for(int i=1;i<=n;i++) f[i]=1e9;
f[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
f[i]=min(f[i],f[j-1]+(sumw[i]-sumw[j-1])*sumt[i]+S*(sumw[n]-sumw[j-1]));
}
printf("%d",f[n]);
}
int main()
{
freopen("batch.in","r",stdin);
freopen("batch.out","w",stdout);
int x;
n=read(),S=read();
for(int i=1;i<=n;i++)
{
x=read(),F[i]=read();
sumt[i]=sumt[i-1]+x;
sumw[i]=sumw[i-1]+F[i];
}
slove();
return 0;
}

Cogs 376. [IOI2002]任务安排(后效性DP)的更多相关文章

  1. Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP

    有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...

  2. CF24D Broken robot 后效性DP

    这题咕了好久..... 设$f[i][j]$表示从$(i,j)$到最后一行的期望步数: 则有 $ f[i][1]=\frac{1}{3}(f[i][1]+f[i][2]+f[i+1][1])+1$ $ ...

  3. 『Broken Robot 后效性dp 高斯消元』

    Broken Robot Description 你作为礼物收到一个非常聪明的机器人走在矩形板上.不幸的是,你明白它已经破碎并且行为相当奇怪(随机).该板由N行和M列单元组成.机器人最初位于第i行和第 ...

  4. luogu 4042 有后效性的dp

    存在有后效性的dp,但转移方程 f[i] = min( f[i], s[i] + sigma f[j] ( j 是后效点) ) 每次建当前点和 转移点的边 e1, 某点和其会影响的点 e2 spfa ...

  5. Educational Codeforces Round 62 E 局部dp + 定义状态取消后效性

    https://codeforces.com/contest/1140/problem/E 局部dp + 定义状态取消后效性 题意 给你一个某些位置可以改变的字符串,假如字符串存在回文子串,那么这个字 ...

  6. poj 2228 Naptime(DP的后效性处理)

    \(Naptime\) \(solution:\) 这道题不做多讲,它和很多区间DP的套路一致,但是这一道题它不允许断环成链,会超时.但是我们发现如果这只奶牛跨夜休息那么它在不跨夜的二十四个小时里一定 ...

  7. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

  8. Codeforces - 24D 有后效性的DP处理

    题意:在n*m的网格中,某个物体初始置于点(x,y),每一步行动都会等概率地停留在原地/往左/往右/往下走,求走到最后一行的的步数的数学期望,其中n,m<1000 lyd告诉我们这种题目要倒推处 ...

  9. 0x55 环形与后效性问题

    poj2228 分第一天是否熟睡DP两次 #include<cstdio> #include<iostream> #include<cstring> #includ ...

随机推荐

  1. 面试4 --- constructor必须与class同名,但方法不能与class同名?

    选 C “constructor必须与class同名,但方法不能与class同名”这句话是错误的,方法是可以和class同名的:方法可以和类名同名的,和构造方法唯一的区别就是,构造方法没有返回值.

  2. MySQL Group Replication的安装部署

    一.简介 这次给大家介绍下MySQL官方最新版本5.7.17中GA的新功能 Group Replication . Group Replication是一种可用于实现容错系统的技术.复制组是一组通过消 ...

  3. [LOJ2537] [PKUWC2018] Minimax

    题目链接 LOJ:https://loj.ac/problem/2537 洛谷:https://www.luogu.org/problemnew/show/P5298 Solution 不定期诈尸 好 ...

  4. Codeforces Round #570 Div. 3

    A:暴力从小到大枚举判断. #include<bits/stdc++.h> using namespace std; #define ll long long #define inf 10 ...

  5. Python2与Python3兼容

    Python2与Python3兼容 python3写的代码如何也能在pyhon2上跑?请无论如何加上这一句,python3没有啥影响 from __future__ import absolute_i ...

  6. WebSocket简单使用

    很简单就不写太多介绍了,仅展示服务端代码!! Configure在Startup类的方法中添加WebSockets中间件 app.UseWebSockets(); 可以配置以下设置: KeepAliv ...

  7. 1.ASP.NET Core介绍

    优点: 1.跨平台,高性能,开源,运行在.Net Core 或.Net Framework框架上(asp.net core 3.0及以后只支持.Net Core). 2.各平台上开发工具支持,能够开发 ...

  8. vue项目启动报错You may use special comments to disable some warnings.

    在build/webpack.base.conf.js文件中,注释或者删除掉:...(config.dev.useEslint ? [createLintingRule()] : []),

  9. XnViewer管理浏览照片、图片

    有时候拍完照片想要浏览照片.浏览照片的时候想做一些标记,这个时候就需要使用照片管理器: 之前一直使用谷歌的picasa(不更新了),adobe也有个管理器(比较大):这里主要推荐一个: https:/ ...

  10. netaddr网络地址工具python

    print("==========1==========") from netaddr import IPNetwork # IPNetwork('192.168.7.80/30' ...