UVA 11174 Stand in a Line 树上计数
考虑每个人(t)的所有子女,在全排列中,t可以和他的任意子女交换位置构成新的排列,所以全排列n!/所有人的子女数连乘 即是答案 当然由于有MOD 要求逆。
#include <cstdio>
#include <cstring>
#include <vector> using namespace std;
typedef long long ll;
const int N = 40005;
const ll MOD = 1e9+7; int n, m;
ll v[N];
vector<int> g[N]; void init () {
scanf("%d%d", &n, &m); memset(v, 0, sizeof(v));
for (int i = 0; i <= n; i++)
g[i].clear(); int a, b;
for (int i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
g[b].push_back(a);
}
} ll dfs(int x) {
if (v[x])
return v[x]; for (int i = 0; i < g[x].size(); i++)
v[x] += dfs(g[x][i]);
return ++v[x];
} void gcd (ll a, ll b, ll& x, ll& y, ll& d) {
if (b == 0) {
d = a;
x = 1;
y = 0;
} else {
gcd(b, a%b, y, x, d);
y -= x*(a/b);
}
} int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init (); ll ans = 1, b = 1;
for (ll i = 1; i <= n; i++)
ans = (ans * i) % MOD; for (int i = 1; i <= n; i++)
b = (b * dfs(i)) % MOD; ll p, k, d = 1;
gcd(b, MOD, p, k, d);
ans = ((ans * p) % MOD + MOD) % MOD;
printf("%lld\n", ans);
}
return 0;
}
UVA 11174 Stand in a Line 树上计数的更多相关文章
- uva 11174 Stand in a Line
// uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...
- uva 11174 Stand in a Line (排列组合)
UVa Online Judge 训练指南的题目. 题意是,给出n个人,以及一些关系,要求对这n个人构成一个排列,其中父亲必须排在儿子的前面.问一共有多少种方式. 做法是,对于每一个父节点,将它的儿子 ...
- UVA 11174 Stand in a Line (组合+除法的求模)
题意:村子里有n个人,给出父亲和儿子的关系,有多少种方式可以把他们排成一列,使得没人会排在他父亲的前面 思路:设f[i]表示以i为根的子树有f[i]种排法,节点i的各个子树的根节点,即它的儿子为c1, ...
- UVA 11174 Stand in a Line 树dp+算
主题链接:点击打开链接 题意:白书的P103. 加个虚根就能够了...然后就是一个多重集排列. import java.io.PrintWriter; import java.util.ArrayLi ...
- 【递推】【推导】【乘法逆元】UVA - 11174 - Stand in a Line
http://blog.csdn.net/u011915301/article/details/43883039 依旧是<训练指南>上的一道例题.书上讲的比较抽象,下面就把解法具体一下.因 ...
- UVA 11174 Stand in a Line,UVA 1436 Counting heaps —— (组合数的好题)
这两个题的模型是有n个人,有若干的关系表示谁是谁的父亲,让他们进行排队,且父亲必须排在儿子前面(不一定相邻).求排列数. 我们假设s[i]是i这个节点,他们一家子的总个数(或者换句话说,等于他的子孙数 ...
- 数学:UVAoj 11174 Stand in a Line
Problem J Stand in a Line Input: Standard Input Output: Standard Output All the people in the bytela ...
- CF629E Famil Door and Roads【树上计数+分类讨论】
Online Judge:Codeforces629E,Luogu-CF629E Label:树上计数,分类讨论,换根 题目描述 给出一棵n个节点的树.有m个询问,每一个询问包含两个数a.b,我们可以 ...
- UVa 11174 (乘法逆元) Stand in a Line
题意: 有n个人排队,要求每个人不能排在自己父亲的前面(如果有的话),求所有的排队方案数模1e9+7的值. 分析: <训练指南>上分析得挺清楚的,把公式贴一下吧: 设f(i)为以i为根节点 ...
随机推荐
- HTTP请求的缓存(Cache)机制
原文地址:http://small.aiweimeng.top/index.php/archives/58.html 先来一张图: ####下面简单的来描述一下HTTP Cache机制: 当资源资源第 ...
- Redis数据库No-SQL的介绍安装和使用
Redis安装步骤 1.官网下载Redis压缩包http://download.redis.io/releases/redis-5.0.2.tar.gz,然后将下载的redis上传到虚拟机的/usr/ ...
- Maven错误 diamond operator is not supported in -source 1.5 (use -source 7 or higher to enable diamond operator)问题解决
如果在Maven构建时出现: diamond operator is not supported in -source 1.5 (use -source 7 or higher to enable d ...
- SQL Server I/O Basics
SQL Server I/O Basics Chapter 1http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/sqlIO ...
- 把握linux内核设计思想(十二):内存管理之slab分配器
[版权声明:尊重原创,转载请保留出处:blog.csdn.net/shallnet,文章仅供学习交流.请勿用于商业用途] 上一节最后说到对于小内存区的请求,假设採用伙伴系统来进行分配,则会在页内产生非 ...
- 消息列队 分布式事务解办法 celery flower使用总结
前言 项目中有场景 需要用到 分布式事务业务,经过查下资料把学习相关笔记做记录方便他人或者自己后面查看. 场景 在网站A业务中有个操作 是 要在网站B中新建一台服务器跑业务.A中执行B中的接口创建服务 ...
- 用CSS美化你的HTML
CSS的简介: 1.CSS的定义:层叠样式表.属性和属性值用冒号分隔开,以分号结尾(这些符号都是英文的). 2.CSS得引入方式: 行内引入:<div style="这里写样式&quo ...
- Maven实现Web应用集成測试自己主动化 -- 測试自己主动化(WebTest Maven Plugin)
近期在appfuse看到使用webtest-maven-plugin实现Web应用的集成測试,研究了下.感觉很不错.对于Web应用自己主动构建很有帮助,在性能測试之前能够保证Web应用的基本功能工作正 ...
- java:[1,0] illegal character: \65279 问题
部署项目的时候报下面错误 [java] view plaincopyprint? java:[1,0] illegal character: \65279 java:[1,10] class, int ...
- ubuntu编译airplay
1.alsa/asoundlib.h: No such file or directory 缺少一个库: apt-get install libasound2-dev 2.fatal error: ...