UVA 11174

考虑每个人(t)的所有子女,在全排列中,t可以和他的任意子女交换位置构成新的排列,所以全排列n!/所有人的子女数连乘   即是答案 当然由于有MOD 要求逆。

#include <cstdio>
#include <cstring>
#include <vector> using namespace std;
typedef long long ll;
const int N = 40005;
const ll MOD = 1e9+7; int n, m;
ll v[N];
vector<int> g[N]; void init () {
scanf("%d%d", &n, &m); memset(v, 0, sizeof(v));
for (int i = 0; i <= n; i++)
g[i].clear(); int a, b;
for (int i = 0; i < m; i++) {
scanf("%d%d", &a, &b);
g[b].push_back(a);
}
} ll dfs(int x) {
if (v[x])
return v[x]; for (int i = 0; i < g[x].size(); i++)
v[x] += dfs(g[x][i]);
return ++v[x];
} void gcd (ll a, ll b, ll& x, ll& y, ll& d) {
if (b == 0) {
d = a;
x = 1;
y = 0;
} else {
gcd(b, a%b, y, x, d);
y -= x*(a/b);
}
} int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init (); ll ans = 1, b = 1;
for (ll i = 1; i <= n; i++)
ans = (ans * i) % MOD; for (int i = 1; i <= n; i++)
b = (b * dfs(i)) % MOD; ll p, k, d = 1;
gcd(b, MOD, p, k, d);
ans = ((ans * p) % MOD + MOD) % MOD;
printf("%lld\n", ans);
}
return 0;
}

  

UVA 11174 Stand in a Line 树上计数的更多相关文章

  1. uva 11174 Stand in a Line

    // uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...

  2. uva 11174 Stand in a Line (排列组合)

    UVa Online Judge 训练指南的题目. 题意是,给出n个人,以及一些关系,要求对这n个人构成一个排列,其中父亲必须排在儿子的前面.问一共有多少种方式. 做法是,对于每一个父节点,将它的儿子 ...

  3. UVA 11174 Stand in a Line (组合+除法的求模)

    题意:村子里有n个人,给出父亲和儿子的关系,有多少种方式可以把他们排成一列,使得没人会排在他父亲的前面 思路:设f[i]表示以i为根的子树有f[i]种排法,节点i的各个子树的根节点,即它的儿子为c1, ...

  4. UVA 11174 Stand in a Line 树dp+算

    主题链接:点击打开链接 题意:白书的P103. 加个虚根就能够了...然后就是一个多重集排列. import java.io.PrintWriter; import java.util.ArrayLi ...

  5. 【递推】【推导】【乘法逆元】UVA - 11174 - Stand in a Line

    http://blog.csdn.net/u011915301/article/details/43883039 依旧是<训练指南>上的一道例题.书上讲的比较抽象,下面就把解法具体一下.因 ...

  6. UVA 11174 Stand in a Line,UVA 1436 Counting heaps —— (组合数的好题)

    这两个题的模型是有n个人,有若干的关系表示谁是谁的父亲,让他们进行排队,且父亲必须排在儿子前面(不一定相邻).求排列数. 我们假设s[i]是i这个节点,他们一家子的总个数(或者换句话说,等于他的子孙数 ...

  7. 数学:UVAoj 11174 Stand in a Line

    Problem J Stand in a Line Input: Standard Input Output: Standard Output All the people in the bytela ...

  8. CF629E Famil Door and Roads【树上计数+分类讨论】

    Online Judge:Codeforces629E,Luogu-CF629E Label:树上计数,分类讨论,换根 题目描述 给出一棵n个节点的树.有m个询问,每一个询问包含两个数a.b,我们可以 ...

  9. UVa 11174 (乘法逆元) Stand in a Line

    题意: 有n个人排队,要求每个人不能排在自己父亲的前面(如果有的话),求所有的排队方案数模1e9+7的值. 分析: <训练指南>上分析得挺清楚的,把公式贴一下吧: 设f(i)为以i为根节点 ...

随机推荐

  1. Nginx常用命令(启动/重启/停止/测试配置文件/重新加载配置文件)

    Nginx 安装后只有一个程序文件,本身并不提供各种管理程序,它是使用参数和系统信号机制对 Nginx 进程本身进行控制的. Nginx 的参数包括有如下几个: 使用: /usr/local/ngin ...

  2. flask如何设置模板语言Jinjia?如何查看路由视图函数映射?

    首先flask的模板和静态文件命名必须是确定的templates和static pycharm的模板语言设置

  3. hdu 1689 Alien’s Necklace (bfs层次图剪枝)

    Alien's Necklace Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  4. Spring-boot和Spring-Cloud遇到的问题

    1.spring cloud 使用 feign 启动报错  错误信息 org/springframework/cloud/client/loadbalancer/LoadBalancedRetryFa ...

  5. 步步为营(十六)搜索(二)BFS 广度优先搜索

    上一篇讲了DFS,那么与之相应的就是BFS.也就是 宽度优先遍历,又称广度优先搜索算法. 首先,让我们回顾一下什么是"深度": 更学术点的说法,能够看做"单位距离下,离起 ...

  6. Linux下的ELF可执行文件的格式解析 (转)

    LInux命令只是和Kernel一起被编译进操作系统的存在于FS的ELF格式二进制文件,或者权限足够的脚本,或者一个软链 ELF(Executable and Linking Format)是一种对象 ...

  7. ucgui界面设计演示样例2

    ucgui界面设计演示样例2 本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 环境: 主机:WIN8 开发环境:MDK4.72 ucgui版本号:3 ...

  8. 进程-IPC 管道 (一)

    详见:https://github.com/ZhangzheBJUT/linux/blob/master/IPC(%E4%B8%80).md 一 IPC 概述 进程间通信就是在不同进程之间传播或交换信 ...

  9. AndroidCityPicker仿IOS选择效果

    近期的一个项目由于android端与IOS端须要同步,所以在城市选择器这里做了一个相似IOS的CityPicker控件,当然由于本人水平问题显示效果比IOS上面还是有一定差距的.OK先让大家看下效果. ...

  10. java的nio包的SelectionKey,Selector,SelectableChannel三者的缠绵关系概述

    猛击这里 java的nio包的SelectionKey,Selector,SelectableChannel三者的缠绵关系概述