相关例题:NOIP 1999导弹拦截

遇到这题不会去网上搜Dilworth定理,太难受了,看不懂证明

但是,我知道怎么使用了,管那么多,会用就完事了

学习自这篇文章

-1.为什么我不想学证明这个定理

Dilworth定理
在数学理论中的序理论与组合数学中,Dilworth定理根据序列划分的最小数量的链描述了任何有限偏序集的宽度。其名称取自数学家Robert P. Dilworth。
定理内容
编辑
反链是一种偏序集,其任意两个元素不可比;而链则是一种任意两个元素可比的偏序集。Dilworth定理说明,存在一个反链A与一个将序列划分为链族P的划分,使得划分中链的数量等于集合A的基数。当存在这种情况时,对任何至多能包含来自P中每一个成员一个元素的反链,A一定是此序列中的最大反链。同样地,对于任何最少包含A中的每一个元素的一个链的划分,P也一定是序列可以划分出的最小链族。偏序集的宽度被定义为A与P的共同大小。
另一种Dilworth定理的等价表述是:在有穷偏序集中,任何反链最大元素数目等于任何将集合到链的划分中链的最小数目。一个关于无限偏序集的理论指出,在此种情况下,一个偏序集具有有限的宽度w,当且仅当它可以划分为最少w条链。 [] 归纳性证明
编辑
令P为一有限偏序集,理论认为P为空集时显然成立。假设P最少有一个元素,令a为P中的极大值。
根据归纳法,假设存在一整数k,使得偏序集 可以被k个不相交的链 覆盖,且最少存在一个大小为k的反链 。显然, , 。令 为 的极大值, , 为 中大小为k的反链,令 , 为包含 的大小为k的反链。确定任意不等的索引 ,那么 。令 ,根据 的定义, 。因此,由 推断出 。通过交换 ,可以得到 。由此得证,A为反链。
现在来讨论P。首先假设, , 。令K为链 。那么,通过选择 ,使得 不包含大小为k的反链。由于 是 中大小为k-1的反链,归纳推出 可以被k-1个不相交的链覆盖。因此,正如所需要证明的,P可以被k个不相交的链覆盖。其次,如果 , ,那么由于a是P的极大值, 为P中大小为k+1的反链。现在,P可以被k+1个链 覆盖。到此,定理全部证明结束。 []

点开会感受到数学的恶意

0.定理的妙处

成功把LIS问题的最小划分次数与最大长度联系在一起

1.基本概念

反链:

简单说就是:>与<=,<与>=

举栗子就是:最大上升子序列(>)的反链是最大不上升子序列(<=),,,最大下降子序列(<)的反链就是最大不下降子序列(>=)

记住不要漏等号

2.下结论

   链的最少划分数=反链的最长长度 (不是我自己总结的)

3.举栗子

文字例子:

@1:一个序列最少可以分成n个最长上升子序列,这个序列最长不上升子序列长度为m,则n=m

@2:一个序列最少可以分成n个最长下降子序列,这个序列最长不下降子序列长度为m,则n=m

具体例子:

现在有序列 8 5 2 7 6 4 3 1,它最少可以分为n=2个最长下降子序列,即8 7 6 4 3 1和5 2,,,(8 5 2 7 6 4 3 1)

它最长不下降子序列长度为m=2,即5 7,5 6,2 7,2 6,2 4或2 3,反正没有一个长度超过2的

然后必有n=m,这里的栗子也看出来了,n等于2,m也等于2

如何使用Dilworth定理的更多相关文章

  1. 【codevs1044】导弹拦截问题与Dilworth定理

    题目描述 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某 ...

  2. 偏序集的Dilworth定理

    定理1 令(X,≤)是一个有限偏序集,并令r是其最大链的大小.则X可以被划分成r个但不能再少的反链.其对偶定理称为Dilworth定理:定理2 令(X,≤)是一个有限偏序集,并令m是反链的最大的大小. ...

  3. hdu1051(LIS | Dilworth定理)

    这题根据的Dilworth定理,链的最小个数=反链的最大长度 , 然后就是排序LIS了 链-反链-Dilworth定理 hdu1051 #include <iostream> #inclu ...

  4. (转载)偏序集的Dilworth定理学习

    导弹拦截是一个经典问题:求一个序列的最长不上升子序列,以及求能最少划分成几组不上升子序列.第一问是经典动态规划,第二问直接的方法是最小路径覆盖, 但是二分图匹配的复杂度较高,我们可以将其转化成求最长上 ...

  5. codevs1044:dilworth定理

    http://www.cnblogs.com/submarine/archive/2011/08/03/2126423.html dilworth定理的介绍 题目大意:求一个序列的lds 同时找出这个 ...

  6. BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)

    BZOJ DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合 ...

  7. 【XSY2727】Remove Dilworth定理 堆 树状数组 DP

    题目描述 一个二维平面上有\(n\)个梯形,满足: 所有梯形的下底边在直线\(y=0\)上. 所有梯形的上底边在直线\(y=1\)上. 没有两个点的坐标相同. 你一次可以选择任意多个梯形,必须满足这些 ...

  8. 【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP

    题目描述 有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完. 此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子 ...

  9. BZOJ.1143.[CTSC2008]祭祀(Dilworth定理 最大流ISAP)

    题目链接 题目是求最长反链,反链指点集内任意两点不能互相到达. 根据Dilworth定理,在DAG中,\[最长反链 = 最小路径覆盖 = V - 最大匹配数\] 用Floyd求一遍传递闭包后,在所有可 ...

  10. bzoj 3997 Dilworth定理

    看到这道题感觉像是网络流,如果没有权值,可以用DAG最小路径覆盖,有权值,感觉可以求一个上下界最小可行流,但内存卡了....时间估计也悬. 正解要用到一些数学知识,这里梳理一下: 定义: 偏序关系: ...

随机推荐

  1. Codeforces Round #396 (Div. 2) E. Mahmoud and a xor trip 树形压位DP

      题目链接:http://codeforces.com/contest/766/problem/E Examples input 3 1 2 3 1 2 2 3 out 10 题意: 给你一棵n个点 ...

  2. 韩顺平Oracle笔记

    韩顺平Oracle笔记 分类: DataBase2011-09-07 10:24 3009人阅读 评论(0) 收藏 举报 oracle数据库sqljdbcsystemstring   目录(?)[-] ...

  3. android View页面布局总结 最全总结(转)

    下面是我在工作中总结的内容,希望对大家有帮助. 一.布局 View的几种布局显示方式有下面几种:线性布局(LinearLayout).相对布局(RelativeLayout).表格布局(TableLa ...

  4. 堆排序的C实现

    这几天有点抵触情绪,看过了快速排序还有一些别的东西,但是一点都不想写有点复杂的代码0 0拖到了今天终于写了前几天就应该自己写一下的堆排序,完全用C语言写的,下面把代码贴一下.很多地方写得并不好,不过已 ...

  5. CodeForces 731B Coupons and Discounts (水题模拟)

    题意:有n个队参加CCPC,然后有两种优惠方式,一种是一天买再次,一种是买两天,现在让你判断能不能找到一种方式,使得优惠不剩余. 析:直接模拟,如果本次是奇数,那么就得用第二种,作一个标记,再去计算下 ...

  6. Eclipse出现Class Not Found异常时可以参考我所知道的一个方案

    如过你出现Class Not Found异常,可以参考以下这个解决方案 打开Properties for projectName面板-->Deploment Assembly--:查看有没有缺失 ...

  7. Spark之RDD的定义及五大特性

    RDD是分布式内存的一个抽象概念,是一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,能横跨集群所有节点并行计算,是一种基于工作集的应用抽象. RDD底层存储原理:其数据分布存储于多台机器上 ...

  8. 区间DP UVA 1351 String Compression

    题目传送门 /* 题意:给一个字符串,连续相同的段落可以合并,gogogo->3(go),问最小表示的长度 区间DP:dp[i][j]表示[i,j]的区间最小表示长度,那么dp[i][j] = ...

  9. DFS(连通块) HDU 1241 Oil Deposits

    题目传送门 /* DFS:油田问题,一道经典的DFS求连通块.当初的难题,现在看上去不过如此啊 */ /************************************************ ...

  10. Kafka~服务端几个常用的命令

    在Centos上安装和部署完成kafka之后,我们就可以向服务端推消息和消费它了,今天主要聊几个常用的命令,比建立topic,从broken显示所有topics列表,向broken发消息,从broke ...