Python数据可视化的四种简易方法
摘要: 本文讲述了热图、二维密度图、蜘蛛图、树形图这四种Python数据可视化方法。
数据可视化是任何数据科学或机器学习项目的一个重要组成部分。人们常常会从探索数据分析(EDA)开始,来深入了解数据,并且创建可视化确实有助于让问题更清晰和更容易理解,尤其是对于那些较大的高维度数据集。在项目结束的时候,能够以清晰的、简洁的和令人信服的方式呈现最终结果,这是非常重要的,让你的用户能够理解和明白。
你可能已经看过了我之前的文章《5种快速和简单的Python数据可视化方法(含代码)》(5 Quick and Easy Data Visualizations in Python with Code),其中介绍了5种基本可视化方法:散点图、线图、柱状图、条形图和箱形图。这五个是简单而强大的可视化方法,你绝对可以通过这些方法从数据集中得到巨大的收获。在本文中,将介绍另外4个数据可视化方法,但稍微复杂一些,你可以在看完上一篇文章介绍的基本方法之后再用。
热图(Heat Map)
热图是数据的矩阵表示方式,其中每个矩阵的值用一种颜色来表示。不同的颜色代表不同的级别,矩阵指数将两个对比的列或特征连接在一起。热图可以很好地显示出多个特征变量之间的关系,因为可以直接把一个级别看作一种颜色。还可以通过观察热图中的一些点来查看每个关系是如何与数据集中的其它关系进行比较的。这些颜色的确提供了简单的表示方式,因为这是非常直观的。

现在来看下代码:与matplotlib库相比,seaborn库可用于更高级的图表,通常也需要更多的组件,如更多的颜色、图形或者变量。Matplotlib库用于显示图表,numpy用于生成数据,而pandas用于控制。绘图只是调用一个简单的seaborn函数,如果你发现了一些在视觉上很特别的东西,通过这个函数,还可以设置颜色映射。
# Importing libs
importseaborn as sns
import pandas aspd
importnumpyasnp
importmatplotlib.pyplotasplt
# Create a random dataset
data=pd.DataFrame(np.random.random((10,6)), columns=["Iron Man","CaptainAmerica","BlackWidow","Thor","Hulk", "Hawkeye"])
print(data)
# Plot the heatmap
heatmap_plot=sns.heatmap(data, center=0, cmap='gist_ncar')
plt.show()
二维密度图(2D Density Plot)
二维密度图是一维版本的简单扩展,能够看到关于2个变量的概率分布。让我们看看下面的二维密度图,右边的刻度用颜色表示每一点的概率。最高的概率,看下数据集,似乎大约是0.5的大小和1.4-ish的速度。正如你所看到的,二维密度图对于快速确定数据对于两个变量最集中的区域非常地显著,而不是像一维密度图那样只集中一个变量。当你有两个对输出结果非常重要的变量,并且希望了解它们如何一起对输出结果分布起作用的时候,二维密度图尤其适合。

Seaborn的代码超级简单,我们将通过创建一个偏态分布介绍它。如果你发现某些颜色和阴影在视觉上更特别,那么大多数的可选参数都是为了看起来更清晰。
蜘蛛图(Spider Plot)
蜘蛛图是显示一对多关系最好的方法之一。也就是说,你可以绘制并查看区别于单个变量或类别的多个变量的值。在蜘蛛图中,一个变量相对于另一个变量的特性是显而易见的,因为面积和长度在一些方向上变化了。如果你希望了解几个类别关于这些变量是如何叠加起来的,可以并排绘制一下。在下图中,很容易比较三个电影角色的不同属性,并了解他们的优势所在!

这次我们将能够直接使用matplotlib来创建可视化,而不是用seaborn。需要计算每个属性所在的角度,因为我们希望它们沿圆周被平均地分隔开。我们将在每个计算的角度放置标签,然后把值绘制成一个点,该点到中心的距离取决于它的值或是级别。最后,为了清晰起见,我们将使用半透明的颜色填充由连接各属性点的线所包含的区域。
# Import libs
import pandas aspd
importseabornassns
importnumpyasnp
importmatplotlib.pyplotasplt
# Get the data
df=pd.read_csv("avengers_data.csv")
print(df)
"""
# Name Attack Defense Speed Range Health
0 1 Iron Man 83 80 75 70 70
1 2 Captain America 60 62 63 80 80
2 3 Thor 80 82 83 100 100
3 3 Hulk 80 100 67 44 92
4 4 Black Widow 52 43 60 50 65
5 5 Hawkeye 58 64 58 80 65
"""
# Get the data for Iron Man
labels=np.array(["Attack","Defense","Speed","Range","Health"])
stats=df.loc[0,labels].values
# Make some calculations for the plot
angles=np.linspace(0, 2*np.pi, len(labels), endpoint=False)
stats=np.concatenate((stats,[stats[0]]))
angles=np.concatenate((angles,[angles[0]]))
# Plot stuff
fig=plt.figure()
ax=fig.add_subplot(111, polar=True)
ax.plot(angles, stats, 'o-', linewidth=2)
ax.fill(angles, stats, alpha=0.25)
ax.set_thetagrids(angles *180/np.pi, labels)
ax.set_title([df.loc[0,"Name"]])
ax.grid(True)
plt.show()
树形图(Tree Diagram)
我们从小学就开始使用树形图了,树形图既自然又直观,还易于解释。直接连接的节点关系密切,而与有多个连接的节点差别很大。在下图中,我已经根据统计绘制了一小部分来自Kaggle的Pokemon with stats数据集:
HP、攻击、防御、特殊攻击、特殊防御、速度
因此,与stats wise最匹配的Pokemon将紧密连接在一起。例如,我们看到,在顶部,Arbok和Fearow是直接连接的,而且,如果我们查看数据,Arbok总共有438个,而Fearow有442个,非常接近。但是一旦我们移动到Raticate,我们得到的总数是413,这与Arbok和Fearow的差别很大,这就是它们被分开的原因。当我们移动树的时候,基于相似性,Pokemon被分的组越来越多。在绿色组中的Pokemon相互之间比红色组中的更相似,即使没有直接的绿色连接。

对于树形图,我们实际上要使用Scipy的。在查看了数据集之后,我们将去掉字符串类型的列。我们这么做只是为了要得到正确的可视化结果,但在实践中,最好是把这些字符串转换成分类变量,为了得到更好的结果和进行比较,我们还设置了数据帧索引,以便能够适当地用它作为引用每个节点的列。最后,在Scipy中计算和绘制树形图是非常简单的事了。
# Import libs
import pandas aspd
frommatplotlibimportpyplotasplt
fromscipy.clusterimport hierarchy
importnumpyasnp
# Read in the dataset
# Drop any fields that are strings
# Only get the first 40 because this dataset is big
df=pd.read_csv('Pokemon.csv')
df=df.set_index('Name')
del df.index.name
df=df.drop(["Type 1", "Type 2", "Legendary"], axis=1)
df=df.head(n=40)
# Calculate the distance between each sample
Z =hierarchy.linkage(df, 'ward')
# Orientation our tree
hierarchy.dendrogram(Z, orientation="left", labels=df.index)
plt.show()
推荐阅读
为了了解更多的关于数据可视化方面的知识,我建议大家学习这本书 — Data Visualisation Book,它提供了关于何时、何地、以及为什么使用各个类型的可视化方法的全面而直观的讲解。
本文为云栖社区原创内容,未经允许不得转载。
Python数据可视化的四种简易方法的更多相关文章
- python第三方库的四种安装方法
1,直接pip install安装 2,在python-->default setting-->project interprer-->add 3,在这个链接里找到需要的包,下载 h ...
- Python遍历List集合四种方法
这篇文章主要介绍了Python 列表(List) 的四种遍历方法实例 详解的相关资料,需要的朋友可以参考下 分别是:直接遍历对象 通过索引遍历 通过enumerate方法 通过iter方法. 使用Py ...
- c#数据四种执行方法(ExecuteNonQuery)-----转载
c#数据四种执行方法(ExecuteNonQuery) 1.使用ExecuteReader()操作数据库 2.使用ExecuteNonQuery()操作数据库 3.使用ExecuteScalar( ...
- Python数据可视化——使用Matplotlib创建散点图
Python数据可视化——使用Matplotlib创建散点图 2017-12-27 作者:淡水化合物 Matplotlib简述: Matplotlib是一个用于创建出高质量图表的桌面绘图包(主要是2D ...
- Python数据可视化基础讲解
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者:爱数据学习社 首先,要知道我们用哪些库来画图? matplotlib ...
- python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结
除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...
- Python数据可视化-seaborn库之countplot
在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是s ...
- Python数据可视化编程实战pdf
Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度 ...
- 【数据科学】Python数据可视化概述
注:很早之前就打算专门写一篇与Python数据可视化相关的博客,对一些基本概念和常用技巧做一个小结.今天终于有时间来完成这个计划了! 0. Python中常用的可视化工具 Python在数据科学中的地 ...
随机推荐
- arduino 引脚作为输入时的不稳定 解决方案
问题描述: arduino引脚作为输入状态时,高低电平不稳定 出现的原因: arduino 引脚为输入时,引脚电平处于悬空状态,容易受外部电荷信号等干扰 解决的方案: 再程序配置为输入状态后 使用下拉 ...
- \usepackage{ulem}带下划线的问题解决
其实正文应该是斜体字的,但是有可能默认模板会导致斜体变下划线的问题,解决方法如下: \usepackage{ulem} 在 \documentclass[format=acmsmall, review ...
- Scala中的Implicit详解
Scala中的implicit关键字对于我们初学者像是一个谜一样的存在,一边惊讶于代码的简洁, 一边像在迷宫里打转一样地去找隐式的代码,因此我们团队结合目前的开发工作,将implicit作为一个专题进 ...
- 初学mybatis和mysql碰到的问题
今天学习了下使用mybatis操作数据库,期间也是各种问题出现,幸好现在网络发达,网络上很多都可以解决,现在总结一下: Exception in thread "main" org ...
- Openvswitch手册(3): sFlow, netFlow
这一节,我们重点看sFlow 采样流sFlow(Sampled Flow)是一种基于报文采样的网络流量监控技术,主要用于对网络流量进行统计分析. sFlow系统包含一个嵌入在设备中的sFlow Age ...
- Jenkins 定时构建语法规则
1.Jenkins自由风格任务定时构建 2.语法规则 定时构建语法 * * * * * 第一个*表示分钟,取值0~59 第二个*表示小时,取值0~23 第三个*表示一个月的第几天,取值1~31 第四个 ...
- java基础知识-笔记整理
1.查看已安装jdk文件路径 CMD输入java -verbose. 2.java学习提升路线 java学习视屏地址: http://www.icoolxue.com/album/show/38 ...
- Java实现链表的常见操作算法
链表分为单链表,双向链表和循环链表,是一种链式存储结构,由一个个结点链式构成,结点包含数据域和指针域,其中单链表是只有一个指向后驱结点的指针,双向链表除头结点和尾结点外,每个结点都有一个前驱指针和一个 ...
- 吴恩达机器学习笔记34-模型选择和交叉验证集(Model Selection and Train_Validation_Test Sets)
假设我们要在10 个不同次数的二项式模型之间进行选择: 显然越高次数的多项式模型越能够适应我们的训练数据集,但是适应训练数据集并不代表着能推广至一般情况,我们应该选择一个更能适应一般情况的模型.我们需 ...
- DOS窗口查看端口占用
背景:最近用tomcat,一直访问不了,要账号密码登录,最后发现问题原因根本是tomcat的默认端口号8080被占用了,下面介绍如何通过dos窗口找到占用端口的进程. 方法: 打开DOS窗口,输入ne ...