Problem A: Apple(高斯消元)
- 可以发现具有非常多的方程, 然后高斯消元就能85分
- 然而我们发现这些方程组成了一些环, 我们仅仅设出一部分变量即可获得N个方程, 就可以A了
- trick 合并方程
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <iostream>
#include <cmath>
#define ldb long double
#define ll long long
#define mmp make_pair
#define M 222
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
int n, m, x, y;
int id[M][M], cnt;
double d[M][M];
double f[M][M][M];
void gauss() {
for(int i = 0; i <= cnt; i++) {
int k = i;
for(int j = i + 1; j <= cnt; j++) if(fabs(d[j][i]) > fabs(d[k][i])) k = j;
if(k != i) for(int j = 0; j <= cnt + 1; j++) swap(d[i][j], d[k][j]);
for(int j = 0; j <= cnt; j++) {
if(i == j) continue;
double t = d[j][i] / d[i][i];
for(int k = 0; k <= cnt + 1; k++) d[j][k] -= d[i][k] * t;
}
}
}
int main() {
n = read(), m = read(), x = read(), y = read();
for(int i = 0; i < m; i++) f[n][i][i] = 1;
for(int i = n - 1; i > x; i--) {
double d = 0.5;
for(int j = 0; j < m; j++,d *= 0.5)
for(int k = 0; k <= m; k++)
f[i][0][k] += d * f[i + 1][j][k];
d *= 2;
f[i][0][m] += 2.0 - d * 2.0;
for(int k = 0; k <= m; k++)
f[i][m][k] = (f[i][0][k] *= 1.0 / (1.0 - d));
for(int j = m - 1; j > 0; j-- ) {
for(int k = 0; k <= m; k++)
f[i][j][k] += 0.5 * (f[i][j + 1][k] + f[i + 1][j][k]);
f[i][j][m] += 1.0;
}
}
for(int i = y - 1; i >= 0; i--) {
for(int k = 0; k <= m; k++)
f[x][i][k] += 0.5 * (f[x][i + 1][k] + f[x + 1][i][k]);
f[x][i][m] += 1.0;
}
for(int k = 0; k <= m; k++)
f[x][m][k] = f[x][0][k];
for(int i = m - 1; i>y; i--) {
for(int k = 0; k <= m; k++)
f[x][i][k] += 0.5 * (f[x][i + 1][k] + f[x + 1][i][k]);
f[x][i][m] += 1.0;
}
for(int i = x - 1; i >= 0; i--) {
double d = 0.5;
for(int j = 0; j < m; j++,d *= 0.5)
for(int k = 0; k <= m; k++)
f[i][0][k] += d * f[i + 1][j][k];
d *= 2;
f[i][0][m] += 2.0 - d * 2.0;
for(int k = 0; k <= m; k++)
f[i][m][k] = (f[i][0][k] *= 1.0 / (1.0 - d));
for(int j = m - 1; j > 0; j--) {
for(int k = 0; k <= m; k++)
f[i][j][k] += 0.5 * (f[i][j + 1][k] + f[i + 1][j][k]);
f[i][j][m] += 1.0;
}
}
memcpy(d,f[0],sizeof(d));
cnt = m - 1;
for(int k = 0; k < m; k++) d[k][k] -= 1.0;
gauss();
printf("%.6lf\n",-d[0][m]/d[0][0]);
return 0;
}
Problem A: Apple(高斯消元)的更多相关文章
- HihoCoder 1195 高斯消元·一(高斯消元)
题意 https://hihocoder.com/problemset/problem/1195 思路 高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) . 过程大致是: 构造一个未知数 ...
- 【POJ】1830 开关问题(高斯消元)
http://poj.org/problem?id=1830 高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法.这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为 ...
- POJ 1681---Painter's Problem(高斯消元)
POJ 1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...
- POJ 1681 Painter's Problem(高斯消元+枚举自由变元)
http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...
- POJ 1681 Painter's Problem 【高斯消元 二进制枚举】
任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS Memory Limit: 10000K Total ...
- poj 1681 Painter's Problem(高斯消元)
id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...
- POJ - 1681: Painter's Problem (开关问题-高斯消元)
pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...
- HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...
- UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...
随机推荐
- 使用min-device-pixel-ratio媒体功能实现真正的1像素border
关于设备像素比的知识,想必做过移动端开发的都有接触,这里就不介绍啦,万一有不懂的可以看张鑫旭大神的设备像素比devicePixelRatio简单介绍 由于设备像素比存在的原因,我们在处理设计图的一些边 ...
- register form code(2nd week blog)
register form code(2nd week blog) 注册 用户名: 密码: 确认密码: 邮箱: 电话: 性别: 男 女
- Spock - Document -06 - Modules
Modules Peter Niederwieser, The Spock Framework TeamVersion 1.1 Guice Module Integration with the Gu ...
- C++中const的用法
1.const修饰普通变量和指针 (1).const修饰普通变量 其写法有2种:a.const type value; b.type const value; 这两种写法本质上是一样的.其含义是: ...
- Python中serial的使用
一.概述 pyserial模块封装了对串口的访问. 二.特性 在支持的平台上有统一的接口. 通过python属性访问串口设置. 支持不同的字节大小.停止位.校验位和流控 ...
- python学习|类和实例
什么叫实例对象呢?大家可以想象一下,[类]就像工厂的模具,以它为模板,造出来的成千上万的产品,才是被我们消费.购买.使用,真正融入我们生活的东西.这些产品,在Python中就叫[实例对象]. 往深了说 ...
- java--遇到NoSuchMethodError通用解决思路
https://www.cnblogs.com/xiaoMzjm/p/4566672.html 最近接手新项目,项目一跑,NoSuchMethodError蹦出来了,好不容易解决了,换一个电脑,NoS ...
- 汇编实验2(又是作业emm)
实验任务:学会使用debug 1.使用Debug,将程序段写入内存: 首先对0021:0000~0021:000F的内存赋值 这里我赋的值是 11 12 13 14 15 16 17 18 输入mov ...
- JavaList列表的一些方法
import java.util.ArrayList;import java.util.Iterator;import java.util.List; public class Test1 { pub ...
- day-12函数对象
函数默认值的细节 如果函数的默认参数的默认值为变量,在所属函数定义阶段一执行就被确定为当时变量存放的值,后面变化不会再变化 a = 100 def fn(num=a): a = 200 fn() 三元 ...