• 可以发现具有非常多的方程, 然后高斯消元就能85分
  • 然而我们发现这些方程组成了一些环, 我们仅仅设出一部分变量即可获得N个方程, 就可以A了
  • trick 合并方程
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#include <iostream>
#include <cmath>
#define ldb long double
#define ll long long
#define mmp make_pair
#define M 222
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
int n, m, x, y; int id[M][M], cnt;
double d[M][M];
double f[M][M][M];
void gauss() {
for(int i = 0; i <= cnt; i++) {
int k = i;
for(int j = i + 1; j <= cnt; j++) if(fabs(d[j][i]) > fabs(d[k][i])) k = j;
if(k != i) for(int j = 0; j <= cnt + 1; j++) swap(d[i][j], d[k][j]);
for(int j = 0; j <= cnt; j++) {
if(i == j) continue;
double t = d[j][i] / d[i][i];
for(int k = 0; k <= cnt + 1; k++) d[j][k] -= d[i][k] * t;
}
}
}
int main() {
n = read(), m = read(), x = read(), y = read();
for(int i = 0; i < m; i++) f[n][i][i] = 1;
for(int i = n - 1; i > x; i--) {
double d = 0.5;
for(int j = 0; j < m; j++,d *= 0.5)
for(int k = 0; k <= m; k++)
f[i][0][k] += d * f[i + 1][j][k];
d *= 2;
f[i][0][m] += 2.0 - d * 2.0;
for(int k = 0; k <= m; k++)
f[i][m][k] = (f[i][0][k] *= 1.0 / (1.0 - d));
for(int j = m - 1; j > 0; j-- ) {
for(int k = 0; k <= m; k++)
f[i][j][k] += 0.5 * (f[i][j + 1][k] + f[i + 1][j][k]);
f[i][j][m] += 1.0;
}
}
for(int i = y - 1; i >= 0; i--) {
for(int k = 0; k <= m; k++)
f[x][i][k] += 0.5 * (f[x][i + 1][k] + f[x + 1][i][k]);
f[x][i][m] += 1.0;
}
for(int k = 0; k <= m; k++)
f[x][m][k] = f[x][0][k];
for(int i = m - 1; i>y; i--) {
for(int k = 0; k <= m; k++)
f[x][i][k] += 0.5 * (f[x][i + 1][k] + f[x + 1][i][k]);
f[x][i][m] += 1.0;
}
for(int i = x - 1; i >= 0; i--) {
double d = 0.5;
for(int j = 0; j < m; j++,d *= 0.5)
for(int k = 0; k <= m; k++)
f[i][0][k] += d * f[i + 1][j][k];
d *= 2;
f[i][0][m] += 2.0 - d * 2.0;
for(int k = 0; k <= m; k++)
f[i][m][k] = (f[i][0][k] *= 1.0 / (1.0 - d));
for(int j = m - 1; j > 0; j--) {
for(int k = 0; k <= m; k++)
f[i][j][k] += 0.5 * (f[i][j + 1][k] + f[i + 1][j][k]);
f[i][j][m] += 1.0;
}
}
memcpy(d,f[0],sizeof(d));
cnt = m - 1;
for(int k = 0; k < m; k++) d[k][k] -= 1.0;
gauss();
printf("%.6lf\n",-d[0][m]/d[0][0]);
return 0;
}

Problem A: Apple(高斯消元)的更多相关文章

  1. HihoCoder 1195 高斯消元·一(高斯消元)

    题意 https://hihocoder.com/problemset/problem/1195 思路 高斯消元是解决高元方程的一种算法,复杂度 \(O(n^3)\) . 过程大致是: 构造一个未知数 ...

  2. 【POJ】1830 开关问题(高斯消元)

    http://poj.org/problem?id=1830 高斯消元无解的条件:当存在非法的左式=0而右式不等于0的情况,即为非法.这个可以在消元后,对没有使用过的方程验证是否右式不等于0(此时因为 ...

  3. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  4. POJ 1681 Painter's Problem(高斯消元+枚举自由变元)

    http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...

  5. POJ 1681 Painter's Problem 【高斯消元 二进制枚举】

    任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total ...

  6. poj 1681 Painter&#39;s Problem(高斯消元)

    id=1681">http://poj.org/problem? id=1681 求最少经过的步数使得输入的矩阵全变为y. 思路:高斯消元求出自由变元.然后枚举自由变元,求出最优值. ...

  7. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  8. HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...

  9. UVALive 7138 The Matrix Revolutions(Matrix-Tree + 高斯消元)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

随机推荐

  1. org.springframework.transaction.CannotCreateTransactionException: Could not open Hibernate Session for transaction; nested exception is org.hibernate.exception.JDBCConnectionException: Cannot open con

    org.springframework.transaction.CannotCreateTransactionException: Could not open Hibernate Session f ...

  2. 16.python-I/O模型

    一.事件驱动模型1.什么是事件驱动模型:本身是一种编程范式,这里程序的执行是由外部事件来决定的.它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理.常见的编程范式(单线程)同步以 ...

  3. MySql最土的语法解释使用一。

    create database namedb charset utf8;解释:创建一个数据库 namedb改成你的数据库名字,charset是字符集的意思 utf8代表数据库支持中文字符集.必须分号结 ...

  4. 理解 if __name__ == '__main__'

    简单地理解Python中的if __name__ == '__main__' if __name__ == '__main__'的意思是: 当.py文件被直接运行时,if __name__ == '_ ...

  5. [ Codeforces Round #554 (Div. 2) C]

    C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  6. nginx ngx_http_image_filter_module 简单试用

    nginx包含了一个ngx_http_image_filter_module 模块,我们可以方便的进行图片的缩略图,平时一些简单的功能 已经够用了 环境准备 为了简单使用docker-compose ...

  7. WinForm控件开发总结目录

    WinForm控件开发总结(一)------开篇 WinForm控件开发总结(二)------使用和调试自定义控件 WinForm控件开发总结(三)------认识WinForm控件常用的Attrib ...

  8. Windows10 小闹钟

    Windows 10 自带小闹钟功能,便于我们进行时间管理,到点提醒. 尤其作为IT的工作者,首先要保证身体的健康,要定好休息的时间,哪怕5分钟,也能让人满血复活. 其次,便于我们将各种优先级的事务进 ...

  9. 【爬虫综合作业】猫眼电影TOP100分析

    作业的要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3075 一.爬虫对象 猫眼电影TOP100排行榜 二.代码如下 im ...

  10. redis 缓存击穿 看一篇成高手系列3

    什么是缓存击穿 在谈论缓存击穿之前,我们先来回忆下从缓存中加载数据的逻辑,如下图所示 因此,如果黑客每次故意查询一个在缓存内必然不存在的数据,导致每次请求都要去存储层去查询,这样缓存就失去了意义.如果 ...