[TJOI2015]线性代数(最小割)
题目描述
给出一个N*N的矩阵B和一个1*N的矩阵C。求出一个1*N的01矩阵A.使得
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define N 502
#define M 260020
#define inf 2e9
using namespace std;
typedef long long ll;
queue<int>q;
typedef long long ll;
int head[M],deep[M],cur[M],tot=,n,c[N],b[N][N],top;
ll sum,ans;
inline ll rd(){
ll x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
struct edge{int n,to,l;}e[N*N*];
inline void add(int u,int v,int l){
e[++tot].n=head[u];e[tot].to=v;head[u]=tot;e[tot].l=l;
e[++tot].n=head[v];e[tot].to=u;head[v]=tot;e[tot].l=;
}
inline bool bfs(int s,int t){
memset(deep,,sizeof(deep));
memcpy(cur,head,sizeof(cur));
q.push(s);deep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
if(!deep[v]&&e[i].l){deep[v]=deep[u]+;q.push(v);}
}
}
return deep[t];
}
ll dfs(int u,int t,int l){
if(u==t||!l)return l;
ll flow=,f;
for(int &i=cur[u];i;i=e[i].n){
int v=e[i].to;
if(deep[v]==deep[u]+&&(f=dfs(v,t,min(l,e[i].l)))){
e[i].l-=f;e[i^].l+=f;flow+=f;l-=f;
if(!l)break;
}
}
return flow;
}
int main(){
n=rd();int s=,t=n*n+n+;
for(int i=;i<=n;++i)for(int j=;j<=n;++j){
b[i][j]=rd(),sum+=b[i][j];++top,add(,top,b[i][j]);
add(top,n*n+i,inf);add(top,n*n+j,inf);
}
for(int i=;i<=n;++i)c[i]=rd(),add(n*n+i,t,c[i]);
while(bfs(s,t))ans+=dfs(s,t,inf);
cout<<sum-ans;
return ;
}
[TJOI2015]线性代数(最小割)的更多相关文章
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- bzoj 3996 [TJOI2015]线性代数——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- BZOJ 3996 线性代数 最小割
题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- bzoj 3996: [TJOI2015]线性代数【最小割】
把转置矩阵看成逆矩阵吓傻了233 首先按照矩乘推一下式子: \[ D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i] \] \[ D=(\sum_ ...
- BZOJ3996 [TJOI2015]线性代数 【最小割】
题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...
随机推荐
- 数组建 BST
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int N, root = 1; int ...
- sql学习内容记录
1.left函数 left(字段,长度):获取指定字段左侧的数据,类似substring函数 2.union / union all 将多个记录合并成一个完整的数据集 3.insert into se ...
- MySQL的SQL语句优化-group by语句的优化
原文:http://bbs.landingbj.com/t-0-243202-1.html 默认情况下,MySQL排序所有GROUP BY col1, col2, ....,查询的方法如同在查询中指定 ...
- IdentityServer4【Topic】之授权类型
Grant Types 授权类型 授权类型指出了一个客户端如何与IdentityServer进行交互.OpenID Conect和OAuth2.0定义了如下的授权类型: Implicit Author ...
- 面象对象设计原则之七:合成复用原则(Composition/Aggregate Reuse Principle, CARP)
合成复用原则又称为组合/聚合复用原则(Composition/Aggregate Reuse Principle, CARP),其定义如下: 合成复用原则(Composite Reuse Princi ...
- C#如何调用C++的dll
背景 一个项目,算法部分使用C++的openCV库编写图像处理程序,编译成dll,用户界面采用C#编写,去调用该dll暴露的接口. C#编写的是托管代码,编译生成微软中间语言,而普通C++代码则编译 ...
- Android——AsyncTask
AsyncTask简单介绍 我们首先需要明确Android之所以有Handler和AsyncTask,都是为了不阻塞主线程(UI线程),且UI的更新只能在主线程中完成,因此异步处理是不可避免的.And ...
- CentOS7装Tomcat
有两种安装方式:(1)yum 命令 (2)安装包 本次采用第二种方式: 1.windos下载apache-tomcat-7.0.73.tar.gz安装包 2.通过WinSCP传到linux下(本次放 ...
- synchronized与volatile的区别及各自的作用、原理(学习记录)
synchronized与volatile的区别,它们的作用及原理? 说到两者的区别,先要了解锁提供的两种特性:互斥(mutual exclusion) 和可见性(visibility). 互斥:即一 ...
- 在linux系统中实现各项监控的关键技术(2)--内核态与用户态进程之间的通信netlink
Netlink 是一种在内核与用户应用间进行双向数据传输的非常好的方式,用户态应用使用标准的 socket API 就可以使用 netlink 提供的强大功能,内核态需要使用专门的内核 API 来使用 ...