论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》
论文信息
论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation
论文作者:Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, Yu-Gang Jiang
论文来源:aRxiv 2022
论文地址:download
论文代码:download
1 Introduction
无监督域自适应(UDA)的目的是将从一个完全标记的源域学习到的知识转移到一个不同的未标记的目标域。 大多数现有的 UDA 方法通过最小化域间的特征距离来学习域不变的特征表示。
UDA 研究方向:
- discrepancy-based methods:最小化不同域之间的差异;
- adversarial-based methods:为域鉴别器设计一个对抗性优化目标,并通过对抗性学习获得域不变表示;
- domain-adaptive dictionary learning;
- multi-modality representation learning;
- feature disentanglement;
我们的目标是通过对比自监督学习来调整源域和目标域之间的特征分布。
2 方法
NT-Xent loss
B. Cross-domain Contrastive Learning
考虑目标域样本$\boldsymbol{x}_{t}^{i}$ 的 $\ell_{2}\text{-normalized}$ 特征 $\boldsymbol{z}_{t}^{i}$ 作为锚,它的正样本为同一类的源域样本,其特征表示为 $\boldsymbol{z}_{s}^{p}$,那么跨域对比损失:
$\mathcal{L}_{C D C}^{t, i}=-\frac{1}{\left|P_{s}\left(\hat{y}_{t}^{i}\right)\right|} \sum\limits _{p \in P_{s}\left(\hat{y}_{t}^{i}\right)} \log \frac{\exp \left(\boldsymbol{z}_{t}^{i^{\top}} \boldsymbol{z}_{s}^{p} / \tau\right)}{\sum\limits_{j \in I_{s}} \exp \left(\boldsymbol{z}_{t}^{i^{\top}} \boldsymbol{z}_{s}^{j} / \tau\right)} \quad\quad\quad(2)$
其中,$I_{S}$ 代表一个 mini-batch 中的源域样本集合,$P_{s}\left(\hat{y}_{t}^{i}\right)=\left\{k \mid y_{s}^{k}=\hat{y}_{t}^{i}\right\}$ 代表源域和目标域样本 $x_{t}^{i}$ 有相同标签;
$\mathcal{L}_{C D C}=\sum\limits _{i=1}^{N_{s}} \mathcal{L}_{C D C}^{s, i}+\sum\limits_{i=1}^{N_{t}} \mathcal{L}_{C D C}^{t, i} \quad\quad\quad(3)$
$\underset{\boldsymbol{\theta}}{\operatorname{minimize}} \quad \mathcal{L}_{C E}\left(\boldsymbol{\theta} ; D_{s}\right)+\lambda \mathcal{L}_{C D C}\left(\boldsymbol{\theta} ; D_{s}, D_{t}\right) \quad\quad\quad(4)$
C. Pseudo Labels for the Target Domain
在训练过程中,没有来自目标域的真实标签,因此利用 k-means 聚类产生伪标签。由于 K-means 对初始化很敏感,因此使用随机生成的集群不能保证与预定义类别相关的相关语义。为缓解这个问题,将簇的数量设置为类 $M$ 的数量,并使用来自源域的类原型作为初始簇。
$O_{t}^{m} \leftarrow O_{s}^{m}=\mathbb{E}_{i \sim D_{s}\;, \; y_{s}^{i}=m} z_{s}^{i} \quad\quad\quad(5)$
D. Source Data-free UDA
Note:预训练模型 $f_{s}$ 是上文提到的通过交叉熵优化得到的。
许多标准的 UDA 设置,假设在源域和目标域上共享相同的特征编码器,然而由于特征编码器不能同时在源域和目标域上训练,所以 Source Data-free UDA 无法实现。本文的 CDCL 在缺少源域数据的情况下面临的挑战是 :(1) form positive and negative pairs and (2) to compute source class prototypes。
本文通过用训练模型 $_$ 的分类器权值替换源样本来解决这个问题。直觉是,预先训练模型的分类器层的权向量可以看作是在源域上学习到的每个类的原型特征。特别地,我们首先消除了全连通层的 bias ,并对分类器进行了归一化处理。假设 $\boldsymbol{w}_{s}^{m}\in \boldsymbol{W}_{s}=\left[\boldsymbol{w}_{s}^{1}, \ldots, \boldsymbol{w}_{s}^{M}\right]$ 代表从源域学到的 $M$ 分类器的权重向量,由于权值是规范化的,所以我们将它们用作类原型。当适应目标域时,冻结分类器层的参数,以保持源原型,并且只训练特征编码器。通过用源原型替换源样本,在源数据自由设置下的跨域对比损失可以写为:
$\mathcal{L}_{S D F-C D C}^{t, i}=-\sum\limits_{m=1}^{M} \mathbf{1}_{\hat{y}_{t}^{i}=m} \log \frac{\exp \left(\boldsymbol{z}_{t}^{i^{\top}} \boldsymbol{w}_{s}^{m} / \tau\right)}{\sum\limits _{j=1}^{M} \exp \left(\boldsymbol{z}_{t}^{i^{\top}} \boldsymbol{w}_{S}^{j} / \tau\right)} \quad\quad\quad(6)$
source data-free UDA 的最终目标是:
$\operatorname{minimize} \sum\limits _{i=1}^{N_{t}} \mathcal{L}_{S D F-C D C}^{t, i} \quad\quad\quad(8)$

论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》的更多相关文章
- 论文解读(PCL)《Prototypical Contrastive Learning of Unsupervised Representations》
论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和S ...
- 论文解读(LG2AR)《Learning Graph Augmentations to Learn Graph Representations》
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein ...
- 论文解读(MVGRL)Contrastive Multi-View Representation Learning on Graphs
Paper Information 论文标题:Contrastive Multi-View Representation Learning on Graphs论文作者:Kaveh Hassani .A ...
- 论文解读(ARVGA)《Learning Graph Embedding with Adversarial Training Methods》
论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-f ...
- 论文解读(gCooL)《Graph Communal Contrastive Learning》
论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- 论文解读(SimCLR)《A Simple Framework for Contrastive Learning of Visual Representations》
1 题目 <A Simple Framework for Contrastive Learning of Visual Representations> 作者: Ting Chen, Si ...
- 论文解读(GRACE)《Deep Graph Contrastive Representation Learning》
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Fe ...
- 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- 论文解读(MLGCL)《Multi-Level Graph Contrastive Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
随机推荐
- kafka的auto.offset.reset详解与测试
1. 取值及定义 auto.offset.reset有以下三个可选值: latest (默认) earliest none 三者均有共同定义: 对于同一个消费者组,若已有提交的offset,则从提交的 ...
- Python数据科学手册-机器学习: k-means聚类/高斯混合模型
前面学习的无监督学习模型:降维 另一种无监督学习模型:聚类算法. 聚类算法直接冲数据的内在性质中学习最优的划分结果或者确定离散标签类型. 最简单最容易理解的聚类算法可能是 k-means聚类算法了. ...
- Python数据科学手册-机器学习: 决策树与随机森林
无参数 算法 随机森林 随机森林是一种集成方法,集成多个比较简单的评估器形成累计效果. 导入标准程序库 随机森林的诱因: 决策树 随机森林是建立在决策树 基础上 的集成学习器 建一颗决策树 二叉决策树 ...
- 【Spring】Spring bean中id和name的差异
id和name都是spring 容器中中bean 的唯一标识符. id: 一个bean的唯一标识 , 命名格式必须符合XML ID属性的命名规范 name: 可以用特殊字符,并且一个bean可以用多个 ...
- 深入探究 K8S ConfigMap 和 Secret
ConfigMap 1.什么是 ConfigMap? ConfigMap 是用来存储配置文件的 Kubernetes 资源对象,配置对象存储在 Etcd 中,配置的形式可以是完整的配置文件.key/v ...
- Jquery封装的ajax的使用过程发生的问题
Jquery封装的ajax的使用过程发生的问题 今天在做项目的时候使用到了ajax来完成项目前后端数据交互,在之后发现在前端没有数据显示,而后端数据确实存在,在多次检查代码之后,发现代码并不存在问题, ...
- Dytechlab Cup 2022 (A - C)
Dytechlab Cup 2022 (A - C) A - Ela Sorting Books 分析:贪心,将字符串每一位都存在map里,从前往后尽量让每一个\(n / k\)的段\(mex\)值尽 ...
- 强国杯东杯分区赛miscwp
目录 不要被迷惑 PCAP文件分析 平正开 不要被迷惑 编辑 导出http 编辑 得到flag.zip后直接爆破密码 编辑 得到编辑 然后一键解码 编辑 flag{WImuJeqSNPh ...
- 【听如子说】-python模块系列-AIS编解码Pyais
Pyais Module Introduce pyais一个简单实用的ais编解码模块 工作中需要和ais打交道,在摸鱼的过程中发现了一个牛逼的模块,对ais编解码感兴趣的可以拿项目学习一下,或者运用 ...
- 7 步保障 Kubernetes 集群安全
随着 Kubernetes 的发展和改进,新的安全威胁和风险也逐渐向 K8s 转移,因此 K8s 安全性变得越来越重要,而保护 K8s 集群已成为 DevOps 团队不容忽视的重要任务.K8s 有多种 ...