论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》
论文信息
论文标题:Understanding Attention and Generalization in Graph Neural Networks
论文作者:Boris Knyazev, Graham W. Taylor, Mohamed R. Amer
论文来源:2019,NeurIPS
论文地址:download
论文代码:download
1 Introduction
本文关注将注意力 GNNs 推广到更大、更复杂或有噪声的图。作者发现在某些情况下,注意力机制的影响可以忽略不计,甚至有害,但在某些条件下,它给一些分类任务带来了超过 60% 的额外收益。
2 Attention meets pooling in graph neural networks
注意力机制可以用在边上,也可以用在节点上,传统的 GAT 是用在边上,本文更关注于节点上的注意力机制。
注意力机制在CNN里一般用以下公式表达:
$Z=\alpha \odot X \quad\quad\quad(1)$
其中:
- $X \in \mathbb{R}^{N \times C}$ 代表输入;
- $Z_{i}=\alpha_{i} X_{i}$ 是使用注意力机制后的输出;
- $\alpha$ 是注意力系数,并有 $\sum_{i}^{N} \alpha_{i}=1$;
在 Graph U-Nets 的 $\text{Eq.2}$ 中,同样使用到了注意力机制:
$Z_{i}=\left\{\begin{array}{ll}\alpha_{i} X_{i}, & \forall i \in P \\\emptyset, & \text { otherwise }\end{array}\right.\quad\quad\quad(2)$
其中:
- $P$ 是一组集合节点的索引,且有 $|P| \leq N$;
- $\emptyset$ 表示输出中不存在该单元;
本文的 $\text{Eq.2}$ 和 $\text{Eq.1}$ 的不同之处在于,在 Graph U-Nets 中 $Z \in \mathbb{R}^{|P| \times C}$ 表明只使用了部分节点,即保存了 $r=|P| / N \leq 1$ 部分的节点。
本文设计了两个简单的图形推理任务,让我们在一个受控环境中研究注意力,了解地面真实注意力。第一个任务是计算图中的颜色,其中颜色是一个唯一的离散特征。第二个任务是计算图形中的三角形的数量。我们在一个标准基准,MNIST[13](Figure1)上证实了我们的观察结果,并确定了影响注意力有效性的因素。

3 Model
本文研究了两种GNNs:GCN 和 GIN,其中 GIN 将原有的 MEAN aggregator 替换为 SUM aggregator,然后使用一个 FC 层。
3.1 Thresholding by attention coefficients
使用 Graph U-Nets 中的方法,需要使用预定义的比率 $r=|P| / N$ 为整个数据集选择节点。比如对每个 pooling 设置 r = 0.8 即 80% 的节点被保存下来。直观地说,对于大小不同的图,这个比率应该是不同的。因此,建议选择阈值 $\tilde{\alpha}$,这样就只传播具有注意值 $\alpha_{i}>\tilde{\alpha}$ 的节点:
$Z_{i}=\left\{\begin{array}{ll}\alpha_{i} X_{i}, & \forall i: \alpha_{i}>\tilde{\alpha} \\\emptyset, & \text { otherwise }\end{array}\right. \quad\quad\quad(3)$
Note:图中删除的节点不同于保存的节点,其特征的值是非常小的,甚至为 $0$。在本实验中,相近邻域的节点通常有相似 $\alpha$ ,因此整个局部邻域被合并或者丢弃,而不是基于聚类的方法将每个邻域压缩为单个节点。
3.2 Attention subnetwork
为了训练一个预测节点系数的注意模型,我们考虑了两种方法:
- Linear Projection[11]:只有单层投影 $\mathbf{p} \in \mathbb{R}^{C}$ 需要被训练:$\alpha_{\text {pre }}=X \mathbf{p}$;
- DiffPool[10],其中训练了一个单独的 GNN:$\alpha_{\text {pre }}=X \mathbf{p}$;
在所有情况下,我们在[11]中使用 softmax 激活函数而不是 tanh,因为它提供了更可解释的结果和稀疏输出:$\alpha=\operatorname{softmax}\left(\alpha_{p r e}\right)$ 。为了以监督或弱监督的方式训练注意力,我们使用 KL 散度损失。
3.3 ChebyGIN
有些结果下,GCNs 和 GINs 表现的较差,本文将 GIN 和 ChebyNet 进行融合,研究了 $K=2$ 的 ChebyGIN。
4 Experiments
4.1 Datasets
本文引入了颜色计数任务,即统计图中绿色的节点有多少个,对于绿色节点设置 注意力系数为 $\alpha_{i}^{G T}=1 / N_{\text {green }}$。
TRIANGLES
统计图中有多少个三角形?显然一个简单 的方法是计算:$\operatorname{trace}\left(A^{3}\right) / 6$ 。
接着对每个节点设置注意力系数:$\alpha_{i}^{G T}=T_{i} / \sum\limits _{i} T_{i}$,其中 $T_{i}$ 是多少个三角形包含节点 $i$。
4.2 Generalization to larger and noisy graphs

在颜色实验中添加了另外一个通道,变成 $4$ 个通道 [ c_1,c_2,c_3,c_3 ],然后其中 [0,1,0,0] 的时候代表绿色,其他的时候 $[c_1,0,c_3,c_4]$ 其中 $c_1$,$c_3$,$c_4$,可以是 $0-1$ 之间的数值,代表红色,蓝色,透明色的三种颜色的混合。
在三角形计数实验中,也引入了更多的节点数。
在MNIST数据集的实验中,加入了高斯噪音,是的模型的识别度更高。
4.3 Network architectures and training
对于 COLORS 和 TRIANGLES,我们最小化了其他任务的回归损失(MSE)和交叉熵(CE),对于有监督和弱监督实验,本文还最小化了 ground truth attention $\alpha^{G T}$ 和 predicted coefficients $\alpha$ 之间的 KL 散度。
为了评估注意力系数的正确性,遵循CNN的方式,我们在训练完一个模型之后呢,移除这个节点,再计算预测一个标签,计算与原始标签的差异,这样来计算出一个评估的 $\alpha$ 系数:
5 Experiments
6 Conclusion
证明了注意力对于图神经网络是非常强大的,但是由于初始注意力系数的敏感性,要达到最优是很困难的。特别是在无监督的环境中,由于不能确定初始注意力系数的值,使得这样的训练更加困难。我们还表明,注意力可以使GNN对更大,更嘈杂的图形有更强的能力。同时本文提出的弱监督模型和有监督模型具有相似的优势性。
论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》的更多相关文章
- 论文解读(DAGNN)《Towards Deeper Graph Neural Networks》
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD ...
- 论文解读(Geom-GCN)《Geom-GCN: Geometric Graph Convolutional Networks》
Paper Information Title:Geom-GCN: Geometric Graph Convolutional NetworksAuthors:Hongbin Pei, Bingzhe ...
- 论文解读(soft-mask GNN)《Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks》
论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Ya ...
- 论文解读(SelfGNN)《Self-supervised Graph Neural Networks without explicit negative sampling》
论文信息 论文标题:Self-supervised Graph Neural Networks without explicit negative sampling论文作者:Zekarias T. K ...
- 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》
论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(GIN)《How Powerful are Graph Neural Networks》
Paper Information Title:<How Powerful are Graph Neural Networks?>Authors:Keyulu Xu, Weihua Hu, ...
- 论文解读(LA-GNN)《Local Augmentation for Graph Neural Networks》
论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Ting ...
- 论文解读(GraphSMOTE)《GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks》
论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxi ...
随机推荐
- 《Mybatis 手撸专栏》第9章:细化XML语句构建器,完善静态SQL解析
作者:小傅哥 博客:https://bugstack.cn 沉淀.分享.成长,让自己和他人都能有所收获! 一.前言 你只是在解释过程,而他是在阐述高度! 如果不是长时间的沉淀.积累和储备,我一定也没有 ...
- 2021年第十二届蓝桥杯javaA组省赛部分题目
试题 D: 路径 本题总分:10 分 [问题描述] 小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图 中的最短路径. 小蓝的图由 2021 个结点组成,依次编号 1 至 2021. 对 ...
- python爬虫之企某科技JS逆向
python爬虫简单js逆向案例在学习时需要用到数据,学习了python爬虫知识,但是在用爬虫程序的时候就遇到了问题.具体如下,在查看请求数据时发现返回的数据是加密的信息,现将处理过程记录如下,以便大 ...
- Opentelemetry SDK的简单用法
Opentelemetry SDK的简单用法 概述 Opentelemetry trace的简单架构图如下,客户端和服务端都需要启动一个traceProvider,主要用于将trace数据传输到reg ...
- Phantomjs实用代码段(持续更新中……)
一.下载 下载链接二.解压安装包 直接解压即可三.配置环境变量 找到高级系统设置,打开它,出现以下图.点击环境变量. 分别点击编辑按钮 分别新建添加当初的解压路径,到bin文件夹.点击确定. 这样,环 ...
- 如何修改servlet的创建时机?
在xml中使用<load-on-startup>标签 当标签里为正整数时意味着服务器启动时创建 当为负数时(默认负数)意味着第一次访问时创建 顺带说一下service设置变量时的问题尽量在 ...
- 【python量化】将Transformer模型用于股票价格预测
本篇文章主要教大家如何搭建一个基于Transformer的简单预测模型,并将其用于股票价格预测当中.原代码在文末进行获取.小熊猫的python第二世界 1.Transformer模型 Transfor ...
- 给你准备好了——50道Python面试题集锦(附答案)
Python是目前编程领域最受欢迎的语言.在本文中,我将总结Python面试中最常见的50个问题.每道题都提供参考答案,希望能够帮助你在2019年求职面试中脱颖而出,找到一份高薪工作.这些面试题涉及P ...
- HMS Core音频编辑服务3D音频技术,助力打造沉浸式听觉盛宴
2022年6月28日,HDD·HMS Core.Sparkle影音娱乐沙龙在线上与开发者们见面.HMS Core音频编辑服务(Audio Editor Kit)专家为大家详细分享了基于分离的3D音乐创 ...
- Java:如何打印整个字符串数组?
例: public static void main(String[] args) { String prodName = "雇员姓名,雇员唯一号"; String[] prodN ...