Pytorch中pad函数toch.nn.functional.pad()的用法
padding操作是给图像外围加像素点。
为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理。


这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框。具体代码如下:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
import torch.nn,functional as Fimport torchfrom PIL import Imageim=Image.open("heibai.jpg",'r')X=torch.Tensor(np.asarray(im))print("shape:",X.shape)dim=(10,10,10,10)X=F.pad(X,dim,"constant",value=0)padX=X.data.numpy()padim=Image.fromarray(padX)padim=padim.convert("RGB")#这里必须转为RGB不然会padim.save("padded.jpg","jpeg")padim.show()print("shape:",padX.shape) |
输出:
|
1
2
|
shape: torch.Size([256, 256])shape: (276, 276) |
可以看出给原图四个方向给加上10维度的0,维度变为256+10+10得到的图像如下:


再举几个简单例子:
|
1
2
3
4
5
6
7
8
9
10
11
12
|
x=np.asarray([[[1,2],[1,2]]])X=torch.Tensor(x)print(X.shape)pad_dims = ( 2, 2, 2, 2, 1, 1, )X=F.pad(X,pad_dims,"constant")print(X.shape)print(X) |
输出:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
torch.Size([1, 2, 2])torch.Size([3, 6, 6])tensor([[[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 1., 2., 0., 0.], [ 0., 0., 1., 2., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]]]) |
可以知若pad_dims为(2,2,2,2,1,1)则原维度变化是2+2+2=6,1+1+1=3.也就是第一个(2,2) pad的是最后一个维度,第二个(2,2) pad是倒数第二个维度,第三个(1,1) pad是第一个维度。
再举一个四维度的,但是只pad三个维度:
|
1
2
3
4
5
6
7
8
9
10
11
12
|
x=np.asarray([[[[1,2],[1,2]]]])X=torch.Tensor(x)#(1,2,2)print(X.shape)pad_dims = ( 2, 2, 2, 2, 1, 1, )X=F.pad(X,pad_dims,"constant")#(1,1,12,12)print(X.shape)print(X) |
输出:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
torch.Size([1, 1, 2, 2])torch.Size([1, 3, 6, 6])tensor([[[[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 1., 2., 0., 0.], [ 0., 0., 1., 2., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]]]]) |
再举一个四维度的,pad四个维度:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
|
x=np.asarray([[[[1,2],[1,2]]]])X=torch.Tensor(x)#(1,2,2)print(X.shape)pad_dims = ( 2, 2, 2, 2, 1, 1, 2, 2 )X=F.pad(X,pad_dims,"constant")#(1,1,12,12)print(X.shape)print(X) |
输出:
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
torch.Size([1, 1, 2, 2])torch.Size([5, 3, 6, 6])tensor([[[[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]], [[ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0., 0.]]], |
Pytorch中pad函数toch.nn.functional.pad()的用法的更多相关文章
- pytorch中文文档-torch.nn.init常用函数-待添加
参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor ...
- ARTS-S pytorch中backward函数的gradient参数作用
导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源 ...
- pytorch中文文档-torch.nn常用函数-待添加-明天继续
https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kerne ...
- ARTS-S pytorch中Conv2d函数padding和stride含义
padding是输入数据最边缘补0的个数,默认是0,即不补0. stride是进行一次卷积后,特征图滑动几格,默认是1,即滑动一格.
- 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交 ...
- PyTorch 中,nn 与 nn.functional 有什么区别?
作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...
- pytorch 中的重要模块化接口nn.Module
torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己 ...
- 『PyTorch』第十二弹_nn.Module和nn.functional
大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Para ...
- PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx
PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...
随机推荐
- Java基础之Scanner类中next()与nextLine()方法的区别
java中使用Scanner类实现数据输入十分简单方便,Scanner类中next()与nextLine()都可以实现字符串String的获取,所以我们会纠结二者之间的区别. 其实next()与nex ...
- JVM学习一:常用JVM配置参数
原文链接:https://www.cnblogs.com/pony1223/p/8661219.html 在IDE的后台打印GC日志: 既然学习JVM,阅读GC日志是处理Java虚拟机内存问题的基础技 ...
- 跨域 CORS 详解 (转)
CORS是一个W3C标准,全称是"跨域资源共享"(Cross-origin resource sharing). 它允许浏览器向跨源服务器,发出XMLHttpRequest请求,从 ...
- jvm与dvm两种虚拟机的不同
jvm : java虚拟机 sun dvm: dalvik虚拟机 google 区别: 1.基于的架构不同,jvm 基于栈架构,栈是位于内存上的一个空间,执行指令操作,需要 ...
- 可能用得上的UI控件
为了便于开发者打造各式各样的优秀App,UIKit框架提供了非常多功能强大又易用的UI控件以下列举一些在开发中可能用得上的UI控件: 红色表明最常用,蓝色代表一般,黑色代表几乎不用(这不是绝对的, ...
- 高德地图定位api以及导航和定位 位置的偏差
<script type="text/javascript" src="http://webapi.amap.com/maps?v=1.4.2&key=37 ...
- 人工智能与智能系统3-> 机器人学3 | 移动机器人平台
机器人学的基本工具已经了解完毕,现在开始了解移动机器人,这部分包括机器人平台.导航.定位. 所谓机器人平台就是指机器人的物理结构及其驱动方式.本文将学习两种典型移动机器人平台(四旋翼和轮式车)的运动与 ...
- requests库session保持持久会话
requests中cookie的原理 http://blog.csdn.net/zhu_free/article/details/50563756 requests - cookies的实现例 ...
- .NET 7 预览版 1 发布
宣布 .NET 7 预览版 1 Jeremy 2022 年 2 月 17 日 今天,我们很高兴地宣布 .NET 历史上的下一个里程碑.在庆祝社区和 20 年创新的同时,.NET 7 Preview 1 ...
- 手把手教你在命令行(静默)部署oracle 11gR2
文章目录 环境介绍 linux发行版 cpu.内存以及磁盘空间 敲黑板 关闭防火墙以及selinux 操作系统配置 使用阿里的yum源提速 安装依赖软件 设置用户最大进程数以及最大文件打开数 内核参数 ...