padding操作是给图像外围加像素点。

为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理。

这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框。具体代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import torch.nn,functional as F
import torch
from PIL import Image
im=Image.open("heibai.jpg",'r')
 
X=torch.Tensor(np.asarray(im))
print("shape:",X.shape)
dim=(10,10,10,10)
X=F.pad(X,dim,"constant",value=0)
 
padX=X.data.numpy()
padim=Image.fromarray(padX)
padim=padim.convert("RGB")#这里必须转为RGB不然会
 
padim.save("padded.jpg","jpeg")
padim.show()
print("shape:",padX.shape)

输出:

1
2
shape: torch.Size([256, 256])
shape: (276, 276)

可以看出给原图四个方向给加上10维度的0,维度变为256+10+10得到的图像如下:

再举几个简单例子:

1
2
3
4
5
6
7
8
9
10
11
12
x=np.asarray([[[1,2],[1,2]]])
X=torch.Tensor(x)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
 
        )
X=F.pad(X,pad_dims,"constant")
print(X.shape)
print(X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([1, 2, 2])
torch.Size([3, 6, 6])
tensor([[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
    [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]])

可以知若pad_dims为(2,2,2,2,1,1)则原维度变化是2+2+2=6,1+1+1=3.也就是第一个(2,2) pad的是最后一个维度,第二个(2,2) pad是倒数第二个维度,第三个(1,1) pad是第一个维度。

再举一个四维度的,但是只pad三个维度:

1
2
3
4
5
6
7
8
9
10
11
12
x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
         )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
torch.Size([1, 1, 2, 2])
torch.Size([1, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 1., 2., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]]])

再举一个四维度的,pad四个维度:

1
2
3
4
5
6
7
8
9
10
11
12
13
x=np.asarray([[[[1,2],[1,2]]]])
X=torch.Tensor(x)#(1,2,2)
print(X.shape)
pad_dims = (
          2, 2,
          2, 2,
          1, 1,
          2, 2
        )
X=F.pad(X,pad_dims,"constant")#(1,1,12,12)
print(X.shape)
print(X)

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
torch.Size([1, 1, 2, 2])
torch.Size([5, 3, 6, 6])
tensor([[[[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]],
 
     [[ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.],
     [ 0., 0., 0., 0., 0., 0.]]],

Pytorch中pad函数toch.nn.functional.pad()的用法的更多相关文章

  1. pytorch中文文档-torch.nn.init常用函数-待添加

    参考:https://pytorch.org/docs/stable/nn.html torch.nn.init.constant_(tensor, val) 使用参数val的值填满输入tensor ...

  2. ARTS-S pytorch中backward函数的gradient参数作用

    导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源 ...

  3. pytorch中文文档-torch.nn常用函数-待添加-明天继续

    https://pytorch.org/docs/stable/nn.html 1)卷积层 class torch.nn.Conv2d(in_channels, out_channels, kerne ...

  4. ARTS-S pytorch中Conv2d函数padding和stride含义

    padding是输入数据最边缘补0的个数,默认是0,即不补0. stride是进行一次卷积后,特征图滑动几格,默认是1,即滑动一格.

  5. 交叉熵的数学原理及应用——pytorch中的CrossEntropyLoss()函数

    分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交 ...

  6. PyTorch 中,nn 与 nn.functional 有什么区别?

    作者:infiniteft链接:https://www.zhihu.com/question/66782101/answer/579393790来源:知乎著作权归作者所有.商业转载请联系作者获得授权, ...

  7. pytorch 中的重要模块化接口nn.Module

    torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己 ...

  8. 『PyTorch』第十二弹_nn.Module和nn.functional

    大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Para ...

  9. PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx

    PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...

随机推荐

  1. React Transition css动画案例解析

    实现React Transition Css动画效果 首先在项目工程中引入react-transition-group: npm install react-transition-group --sa ...

  2. C#运算符重载---逐步地分析与理解

    1.什么是运算符重载 定义:(百科定义)就是把已经定义的.有一定功能的操作符进行重新定义,来完成更为细致具体的运算等功能.操作符重载可以将概括性的抽象操作符具体化,便于外部调用而无需知晓内部具体运算过 ...

  3. iptables简单使用

    1.安装iptables yum install iptables-services 2.iptables简单使用 iptables防火墙文件路径/etc/sysconfig/iptables sys ...

  4. 基于Autolayout的动画

    在修改了约束之后,只要执行下面代码,就能做动画效果 [UIView animateWithDuration:1.0 animations:^{ [添加了约束的view的父控件 layoutIfNeed ...

  5. PHP操作Mysql疑问?

    1.Mysql控制台乱码 set character_set_results = 'utf8';

  6. Ext原码学习之Ext-more.js

    // JavaScript Document Ext.apply(Ext,{ userAgent:navigator.userAgent.toLowerCase(), cache:{}, isSeed ...

  7. Docker容器和宿主机互传文件

    1.docker容器向宿主机传送文件 格式: docker cp container_id:<docker容器内的路径> <本地保存文件的路径> 例: docker cp 10 ...

  8. zeppelin安装及配置

    1.下载安装包,zepplin下载地址:http://zeppelin.apache.org/download.html #创建解压目录 mkdir -p /opt/software #解压 tar ...

  9. 《PHP程序员面试笔试宝典》——如何应对面试官的“激将法”语言?

    如何巧妙地回答面试官的问题? 本文摘自<PHP程序员面试笔试宝典> "激将法"是面试官用以淘汰求职者的一种惯用方法,它是指面试官采用怀疑.尖锐或咄咄逼人的交流方式来对求 ...

  10. opencv笔记--SURF

    SURF(Speeded-Up Robust Features) 是对 SIFT 得改进,相对于 SIFT,SURF 利用积分图像与盒函数模拟 DoG,提升了计算速度:同时,使用了一种不用于 SIFT ...