【刷题】BZOJ 4443 [Scoi2015]小凸玩矩阵
Description
小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或同一列,现小凸想知道选出来的N个数中第K大的数字的最小值是多少。
Input
第一行给出三个整数N,M,K
接下来N行,每行M个数字,用来描述这个矩阵
Output
如题
Sample Input
3 4 2
1 5 6 6
8 3 4 3
6 8 6 3
Sample Output
3
HINT
1<=K<=N<=M<=250,1<=矩阵元素<=10^9
Solution
明显二分
二分答案后,判断是否可行
每一行每一列只能选一个数,经典套路,行列连边
小于等于答案的就可以选,行列连边,然后跑最大匹配
如果最大匹配小于 \(n-k+1\) ,那么说明二分的值小了,要变大
否则二分的值就可以减小,直到找到最小值
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=500+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,m,k,e=1,beg[MAXN],cur[MAXN],level[MAXN],vis[MAXN],clk,to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1],G[MAXN][MAXN],s,t;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(cap[i],maxflow));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline int Dinic()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline bool check(int num)
{
e=1;memset(beg,0,sizeof(beg));
for(register int i=1;i<=n;++i)insert(s,i,1);
for(register int i=1;i<=m;++i)insert(i+n,t,1);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)
if(G[i][j]<=num)insert(i,j+n,1);
if(Dinic()>=n-k+1)return true;
else return false;
}
int main()
{
int l=inf,r=-inf;
read(n);read(m);read(k);
s=n+m+1,t=s+1;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=m;++j)read(G[i][j]),chkmax(r,G[i][j]),chkmin(l,G[i][j]);
int ans;
while(l<=r)
{
int mid=(l+r)>>1;
if(check(mid))ans=mid,r=mid-1;
else l=mid+1;
}
write(ans,'\n');
return 0;
}
【刷题】BZOJ 4443 [Scoi2015]小凸玩矩阵的更多相关文章
- BZOJ 4443: [Scoi2015]小凸玩矩阵 最大流
4443: [Scoi2015]小凸玩矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4443 Description 小凸和小方是好 ...
- bzoj 4443 [Scoi2015]小凸玩矩阵 网络流,二分
[Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1564 Solved: 734[Submit][Status][Di ...
- bzoj 4443: [Scoi2015]小凸玩矩阵
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 149 Solved: 81[Submit][Status][Discuss] Description ...
- BZOJ 4443: [Scoi2015]小凸玩矩阵 二分图最大匹配+二分
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4443 题解: 二分答案,判断最大匹配是否>=n-k+1: #include< ...
- BZOJ 4443 [Scoi2015]小凸玩矩阵(二分答案+二分图匹配)
[题目链接]http://www.lydsy.com/JudgeOnline/problem.php?id=4443 [题目大意] 从矩阵中选出N个数,其中任意两个数字不能在同一行或同一列 求选出来的 ...
- 2018.06.30 BZOJ4443: [Scoi2015]小凸玩矩阵(二分加二分图匹配)
4443: [Scoi2015]小凸玩矩阵 Time Limit: 10 Sec Memory Limit: 128 MB Description 小凸和小方是好朋友,小方给小凸一个N*M(N< ...
- BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配
BZOJ_4443_[Scoi2015]小凸玩矩阵_二分+二分图匹配 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个 ...
- 【BZOJ4443】[Scoi2015]小凸玩矩阵 二分+二分图最大匹配
[BZOJ4443][Scoi2015]小凸玩矩阵 Description 小凸和小方是好朋友,小方给小凸一个N*M(N<=M)的矩阵A,要求小秃从其中选出N个数,其中任意两个数字不能在同一行或 ...
- bzoj 4446: [Scoi2015]小凸玩密室
Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...
随机推荐
- 使用Fiddler进行APP弱网测试
一.安装Fiddler 网上说要先安装.NET Framwork4,应该是由于本机已装,所以在安装Fiddler时并没有相关提示. Fiddler安装包:https://www.telerik.com ...
- c语言数字图像处理(九):边缘检测
背景知识 边缘像素是图像中灰度突变的像素,而边缘是连接边缘像素的集合.边缘检测是设计用来检测边缘像素的局部图像处理方法. 孤立点检测 使用<https://www.cnblogs.com/Gol ...
- selenium 基本常用操作
from selenium import webdriverfrom selenium.webdriver.common.action_chains import ActionChains #鼠标操作 ...
- Netty源码分析第7章(编码器和写数据)---->第5节: Future和Promies
Netty源码分析第七章: 编码器和写数据 第五节: Future和Promise Netty中的Future, 其实类似于jdk的Future, 用于异步获取执行结果 Promise则相当于一个被观 ...
- unzip/tar命令详解
博客目录总纲首页 原文链接:https://www.cnblogs.com/zdz8207/p/3765604.html Linux下的压缩解压缩命令详解及实例 实例:压缩服务器上当前目录的内容为xx ...
- React 之容器组件和展示组件相分离解密
Redux 的 React 绑定库包含了 容器组件和展示组件相分离 的开发思想.明智的做法是只在最顶层组件(如路由操作)里使用 Redux.其余内部组件仅仅是展示性的,所有数据都通过 props 传入 ...
- Java-URLEncoder.encode 什么时候才是必须的
当你希望把一段 URL 当成另一个 URL 的参数时,比如:当用户点击交易的按钮时你发现未登录就跳转到 login 页面同时带上一个参数记录在登录之前用户是希望访问的那个交易页面,这样在登录完成之后再 ...
- Daily Scrum (2015/10/29)
今天晚上我们学霸项目的三个小组在一起开会,讨论如何能在后期使我们三个项目更好地结合在一起.为了三个小组的能够同时工作,不出现某一小组因需要其他小组成果而停滞的情况,我们决定围绕lucene,solr, ...
- 渐入OO课的深处,探索多线程的秘密——OO第二次博客总结
一次又一次的挑战,一次又一次全新的知识,我来到了多线程的面前 第五次作业 1.度量分析 >第五次作业由于很大程度上调用的是前两次电梯的一些代码,所以存在的问题与前几次也十分相似.同时由于第一次使 ...
- 浅谈GIT
浅谈GIT: 牛老师提出的git,于我而言,是一个陌生和新鲜的词汇,在此之前我从未听过git,按照老师的要求,我去搜索了关于git的介绍,有些看懂了,但大部分还是不懂得,在介绍中我了解git其实之前使 ...