MT【148】凸数列
(2018浙江省赛13题)
设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\limits_{k=1}^{2018}x_k=1$
证明:$x_{1009}x_{1010}\le1.$
证明:事实上,由$x_{n+1}^2\le x_nx_{n+2}$易知道,下标为奇数的项同号,下标为偶数的项同号.我们不妨考虑$x_k>0,(k=1,2,\cdots,2018)$(若都为负数只需每一项都变为原来的相反数即可.一正一负的情况下,$x_{1009}x_{1010}<0\le1$,显然)
记$a_n=\ln x_n,(n=1,2\cdots,2018)$.两边取对数,条件变为$2a_{n+1}\le a_{n}+a_{n+2},\sum\limits_{k=1}^{2018}{a_k}=0$,只需证明:$a_{1009}+a_{1010}\le0.\textbf{由凸函数性质}:$
$$a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$$
则$a_{1009}+a_{1010}\le a_1+a_{2018},a_{1009}+a_{1010}\le a_2+a_{2017},\cdots,a_{1009}+a_{1010}\le a_{1009}+a_{1010}$故$1009(a_{1009}+a_{1010})\le\sum\limits_{k=1}^{2018}{a_k}=0$, 得证.
评论:$\{a_{n+1}-a_n\}$单调不减,则$\{a_n\}$称为凸数列,它有以下性质:
$1.a_n+a_{n+2}\ge 2a_{n+1}$
$2.a_n-a_m\ge(n-m)(a_{m+1}-a_m)$
$3.\dfrac{a_n-a_m}{n-m}\ge\dfrac{a_m-a_k}{m-k}(1\le k<m<n)$
$4.a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$
MT【148】凸数列的更多相关文章
- MT【156】特例$a_n=\dfrac{6}{\pi n^2}$
设无穷非负数列$\{a_n\}$满足$a_n+a_{n+2}\ge2 a_{n+1},\sum\limits_{i=1}^{n}{a_i}\le1$,证明:$0\le a_n-a_{n+1}\le\d ...
- PHP如何使用GeoIP数据库
1.首先下载GeoIP的IP库.参考<利用GeoIP数据库及API进行地理定位查询>.下载后解压,得到一个GeoIP.dat文件 2.新建一个文件geoip.inc.内容为 <?ph ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【312】特征根法求数列通项
(2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是( )A ...
- MT【307】周期数列
(2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...
- MT【206】证明整数数列
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...
- MT【150】源自斐波那契数列
(清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...
- MT【121】耐克数列的估计
已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
随机推荐
- 【TestNG测试】TestNG、Maven、testng.xml构建测试工程
创建一个maven工程 使用Idea创建maven工程 建立类似如上的工程结构,src/main/java,src/test/java,pom.xml,testng.xml,这里由于我们使用工程是 ...
- 浅谈ajax同步、异步的问题
最近实习的时候看到过firefox的同步.异步的警告,想着概念不是那么清楚,于是整理了一下ajax同步异步方面的知识.我是小白,做个笔记. 首先就是概念问题,ajax根据async进行区分同步和异步过 ...
- linux上网络问题
一.网络连接失败,不能访问 1.现象描述 network 服务不能启动, ping不通, Device not managed by NetworkManager or unavailable 2.n ...
- MapReduce任务学习系列
首先放一张官方图片,大致了解下整个MapReduce的处理过程. 抛出如下疑问: 1.MapReduce的基本原理是什么?即利用什么机制来实现的任务拆分处理? 2.MapReduce任务执行过程是什么 ...
- 关于几个与IO相关的重要概念
1.读/写IO 读IO就是发指令从磁盘读取某段序号连续的扇区内容.指令一般是通知磁盘开始扇区位置,然后给出需要从这个初始扇区往后读取的连续扇区个数,同时给出动作是读还是写.磁盘收到这条指令就会按照指令 ...
- 持续更新 | 想不到的key
前言 开坑写一些我认为比较巧妙的东西想不到的东西 正文 判断回文串的时候 考虑一下枚举中心位往两边扩展 最大子矩阵与单调栈 遇难则反系列 算合法可以转换成算不合法.同理,不合法转换成合法计算有时也会简 ...
- Metasploit拿Shell
进入metasploit系统 msfconsole Nmap端口扫描 nmap –sV IP(或者域名),如果机器设置有防火墙禁ping,可以使用nmap -P0(或者-Pn) –sV IP(或者域名 ...
- [mysql] 归档工具pt-archiver,binlog格式由mixed变成row
pt-archiver官方地址:https://www.percona.com/doc/percona-toolkit/3.0/pt-archiver.html 介绍:归档数据,比如将一年前的数据备份 ...
- oozie-ext
安装oozie的时候需要ext的包支持,网站上找了一遍不是没有就是这个csdn下载还需要币,麻蛋...下面给出这个链接,在百度云上,如果失效了,在评论区或者给我留言,再发,一下是ext2.2.zip ...
- 浅谈!DOCTYPE声明的作用?严格模式与混杂模式的区别?
!DOCTYPE的作用: DOCTYPE是Document Type(文档类型)的缩写,<!DOCTYPE>声明必须是html文档的第一行,位于<html>标签之前.<! ...