MT【148】凸数列
(2018浙江省赛13题)
设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\limits_{k=1}^{2018}x_k=1$
证明:$x_{1009}x_{1010}\le1.$

证明:事实上,由$x_{n+1}^2\le x_nx_{n+2}$易知道,下标为奇数的项同号,下标为偶数的项同号.我们不妨考虑$x_k>0,(k=1,2,\cdots,2018)$(若都为负数只需每一项都变为原来的相反数即可.一正一负的情况下,$x_{1009}x_{1010}<0\le1$,显然)
记$a_n=\ln x_n,(n=1,2\cdots,2018)$.两边取对数,条件变为$2a_{n+1}\le a_{n}+a_{n+2},\sum\limits_{k=1}^{2018}{a_k}=0$,只需证明:$a_{1009}+a_{1010}\le0.\textbf{由凸函数性质}:$
$$a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$$
则$a_{1009}+a_{1010}\le a_1+a_{2018},a_{1009}+a_{1010}\le a_2+a_{2017},\cdots,a_{1009}+a_{1010}\le a_{1009}+a_{1010}$故$1009(a_{1009}+a_{1010})\le\sum\limits_{k=1}^{2018}{a_k}=0$, 得证.
评论:$\{a_{n+1}-a_n\}$单调不减,则$\{a_n\}$称为凸数列,它有以下性质:
$1.a_n+a_{n+2}\ge 2a_{n+1}$
$2.a_n-a_m\ge(n-m)(a_{m+1}-a_m)$
$3.\dfrac{a_n-a_m}{n-m}\ge\dfrac{a_m-a_k}{m-k}(1\le k<m<n)$
$4.a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$
MT【148】凸数列的更多相关文章
- MT【156】特例$a_n=\dfrac{6}{\pi n^2}$
设无穷非负数列$\{a_n\}$满足$a_n+a_{n+2}\ge2 a_{n+1},\sum\limits_{i=1}^{n}{a_i}\le1$,证明:$0\le a_n-a_{n+1}\le\d ...
- PHP如何使用GeoIP数据库
1.首先下载GeoIP的IP库.参考<利用GeoIP数据库及API进行地理定位查询>.下载后解压,得到一个GeoIP.dat文件 2.新建一个文件geoip.inc.内容为 <?ph ...
- MT【319】分段递推数列
已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...
- MT【312】特征根法求数列通项
(2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是( )A ...
- MT【307】周期数列
(2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...
- MT【206】证明整数数列
已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...
- MT【150】源自斐波那契数列
(清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...
- MT【121】耐克数列的估计
已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...
- MT【311】三角递推数列
已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...
随机推荐
- WebGL2系列之实例数组(Instanced Arrays)
实例化数组 实例化是一种只调用一次渲染函数却能绘制出很多物体的技术,它节省渲染一个物体时从CPU到GPU的通信时间.实例数组是这样的一个对象,使用它,可以把原来的的uniform变量转换成attrib ...
- 第五章 if语句
5.2条件测试 使用==判断相当: 使用!=判断不相等: 每条if语句的核心都是一个值为Tre或False的表达式,这种表达式被称为条件测试,如果条件测试的值为Ture,则执行紧跟在if语句后面的代码 ...
- hadoop之定制自己的sort过程
Key排序 1. 继承WritableComparator 在hadoop之Shuffle和Sort中,可以看到mapper的输出文件spill文件需要在内存中排序,并且在输入reducer之前,不同 ...
- Python基础系列讲解——TCP协议的socket编程
前言 我们知道TCP协议(Transmission Control Protocol, 传输控制协议)是一种面向连接的传输层通信协议,它能提供高可靠性通信,像HTTP/HTTPS等网络服务都采用TCP ...
- 作业要求20181204-7 Final阶段第1周/共1周 Scrum立会报告+燃尽图 02
作业要求参见https://edu.cnblogs.com/campus/nenu/2018fall/homework/2481 版本控制地址https://git.coding.net/lglr20 ...
- mysql更新表数据时报错 You can't specify target table 'RES_CATALOG_CLASSIFY' for update in FROM clause
You can't specify target table for update in FROM clause含义:不能在同一表中查询的数据作为同一表的更新数据. 将sql语句 UPDATE RES ...
- Notes of Daily Scrum Meeting(11.15)
Notes of Daily Scrum Meeting(11.15) 今天周六我们的主要工作是把这周落下的一些工作补回来,这是写程序的最后阶段,准备进入测试阶段了,所以之前的工作 要补齐,今天大家的 ...
- 20172321 2017-2018-2 《Java程序设计》第二周学习总结
20172321 2017-2018-2 <Java程序设计>第二周学习总结 教材学习内容总结 第一章要点: 要点1 字符串:print和println用法的区别,字符串的拼接,java中 ...
- caffe添加自己的数据输入层
整体思路: 阅读caffe数据输入层各个类之间的继承关系,确定当前类需要继承的父类以及所需参数的设置. 编写zzq_data.cpp 在layer_factory.cpp中完成注册: 在caffe.p ...
- 如何快速地编写和运行一个属于自己的 MapReduce 例子程序
大数据的时代, 到处张嘴闭嘴都是Hadoop, MapReduce, 不跟上时代怎么行? 可是对一个hadoop的新手, 写一个属于自己的MapReduce程序还是小有点难度的, 需要建立一个mave ...