(2018浙江省赛13题)

设实数$x_1,x_2,\cdots,x_{2018}$满足$x_{n+1}^2\le x_nx_{n+2},(n=1,2,\cdots,2016)$和$\prod\limits_{k=1}^{2018}x_k=1$
证明:$x_{1009}x_{1010}\le1.$


证明:事实上,由$x_{n+1}^2\le x_nx_{n+2}$易知道,下标为奇数的项同号,下标为偶数的项同号.我们不妨考虑$x_k>0,(k=1,2,\cdots,2018)$(若都为负数只需每一项都变为原来的相反数即可.一正一负的情况下,$x_{1009}x_{1010}<0\le1$,显然)
记$a_n=\ln x_n,(n=1,2\cdots,2018)$.两边取对数,条件变为$2a_{n+1}\le a_{n}+a_{n+2},\sum\limits_{k=1}^{2018}{a_k}=0$,只需证明:$a_{1009}+a_{1010}\le0.\textbf{由凸函数性质}:$
$$a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$$
则$a_{1009}+a_{1010}\le a_1+a_{2018},a_{1009}+a_{1010}\le a_2+a_{2017},\cdots,a_{1009}+a_{1010}\le a_{1009}+a_{1010}$故$1009(a_{1009}+a_{1010})\le\sum\limits_{k=1}^{2018}{a_k}=0$, 得证.

评论:$\{a_{n+1}-a_n\}$单调不减,则$\{a_n\}$称为凸数列,它有以下性质:

$1.a_n+a_{n+2}\ge 2a_{n+1}$

$2.a_n-a_m\ge(n-m)(a_{m+1}-a_m)$
$3.\dfrac{a_n-a_m}{n-m}\ge\dfrac{a_m-a_k}{m-k}(1\le k<m<n)$
$4.a_m+a_n\le a_s+a_t,(m+n=s+t,1\le s\le m,n\le t)$

MT【148】凸数列的更多相关文章

  1. MT【156】特例$a_n=\dfrac{6}{\pi n^2}$

    设无穷非负数列$\{a_n\}$满足$a_n+a_{n+2}\ge2 a_{n+1},\sum\limits_{i=1}^{n}{a_i}\le1$,证明:$0\le a_n-a_{n+1}\le\d ...

  2. PHP如何使用GeoIP数据库

    1.首先下载GeoIP的IP库.参考<利用GeoIP数据库及API进行地理定位查询>.下载后解压,得到一个GeoIP.dat文件 2.新建一个文件geoip.inc.内容为 <?ph ...

  3. MT【319】分段递推数列

    已知数列$ x_n $满足$ 0<x_1<x_2<\pi $,且\begin{equation*} x_{n+1}= \left\{ \begin{aligned}x_n+\sin ...

  4. MT【312】特征根法求数列通项

    (2016清华自招领军计划37题改编) 设数列$\{a_n\}$满足$a_1=5,a_2=13,a_{n+2}=\dfrac{a^2_{n+1}+6^n}{a_n}$则下面不正确的是(      )A ...

  5. MT【307】周期数列

    (2017浙江省数学竞赛) 设数列$\{a_n\}$满足:$|a_{n+1}-2a_n|=2,|a_n|\le2,n\in N^+$证明:如果$a_1$为有理数,则从某项后$\{a_n\}$为周期数列 ...

  6. MT【206】证明整数数列

    已知方程$x^3-x^2-x+1=0$,的三根根为$a,b,c$,若$k_n=\dfrac{a^n-b^n}{a-b}+\dfrac{b^n-c^n}{b-c}+\dfrac{c^n-a^n}{c-a ...

  7. MT【150】源自斐波那契数列

    (清华2017.4.29标准学术能力测试7) 已知数列$\{x_n\}$,其中$x_1=a$,$x_2=b$,$x_{n+1}=x_n+x_{n-1}$($a,b$是正整数),若$2008$为数列中的 ...

  8. MT【121】耐克数列的估计

    已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_{2017}]$_____ 解:容 ...

  9. MT【311】三角递推数列

    已知数列$\{a_n\}$满足$a_1=\dfrac{1}{2},a_{n+1}=\sin\left(\dfrac{\pi}{2}a_n\right),S_n$ 为$\{a_n\}$的前$n$项和,求 ...

随机推荐

  1. LR测试报告分析 -详解

    1. 结果摘要 LoadRunner进行场景测试结果收集后,首先显示的该结果的一个摘要信息,如下图所示.概要中列出了场景执行情况.“Statistics Summary(统计信息摘要)”.“Trans ...

  2. Linux(centos7)之更换安装python3(二)

    Linux不比window好安装python,折腾了好久,终于成功安装上了python,window上一个安装包完事,可惜Linux上python版本太低不好使,还要更换为3版本,百度了好久,教程上总 ...

  3. JUC——线程同步辅助工具类(Semaphore,CountDownLatch,CyclicBarrier)

    锁的机制从整体的运行转态来讲核心就是:阻塞,解除阻塞,但是如果仅仅是这点功能,那么JUC并不能称为一个优秀的线程开发框架,然而是因为在juc里面提供了大量方便的同步工具辅助类. Semaphore信号 ...

  4. 算法设计:UNION-FIND算法实现

    在上周的算法设计课程中,我们学习了UNION-FIND算法,该算法用来对不相交集进行查询与合并操作,但任何优秀的算法都必须要用实际的代码来进行实现,接下来我们就来看看具体的代码实现 1. 不相关集数据 ...

  5. 【SIKIA计划】_05_Unity5.3开发2D游戏笔记

    一.界面基本操作 01.Project基本分类[Audios]音效[Material]材质[Prefabs]预制[Scenes]场景[Scripts]脚本[Sprites]精灵 02.Project丶 ...

  6. Netty源码分析第6章(解码器)---->第3节: 行解码器

    Netty源码分析第六章: 解码器 第三节: 行解码器 这一小节了解下行解码器LineBasedFrameDecoder, 行解码器的功能是一个字节流, 以\r\n或者直接以\n结尾进行解码, 也就是 ...

  7. 如何快速搭建yum源

    yum命令能够从指定的服务器自动下载rpm包并安装,它最强大的地方就是可以自动处理软件包的依赖关系,能够一次安装所有依赖的关系包.下面将通过虚拟机平台介绍两种快速搭建yum源的方法: 一.有网络的情况 ...

  8. DP使用GUI推送WIN客户端是报110:1022错误的解决办法

    在使用GUI推送WIN客户端时,输入用户名和密码后报错: [Critical 110::1022]  Cannot connect to the SCM (Service Control Manage ...

  9. PHP正则表达式匹配俄文字符

    之前弄过匹配中文的 见 http://www.cnblogs.com/toumingbai/p/4688433.html preg_match_all("/([\x{0400}-\x{04F ...

  10. 实践lnmpde 的安装

    1.先安装apache, yum install httpd 2.安装MySQL rpm -qa | grep mysql       // 这个命令就会查看该操作系统上是否已经安装了mysql数据库 ...