链接:
 
Fibonacci
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11236   Accepted: 7991

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

代码:

#include<stdio.h>
#include<string.h>
#define MOD 10000
struct node
{
int m[][];
}a, b; node cheng(node x, node y)
{
int i, j, k;
node c; for(i=; i<; i++)
for(j=; j<; j++)
{
c.m[i][j] = ;
for(k=; k<; k++)
c.m[i][j] = (c.m[i][j] + x.m[i][k]*y.m[k][j])%MOD;
} return c;
} int Fast_MOD(int n)
{
a.m[][] = a.m[][] = a.m[][] = ;
a.m[][] = ; b.m[][] = b.m[][] = ; /// b 初始化为单位矩阵
b.m[][] = b.m[][] = ; while(n)
{
if(n&) /// n是奇数
b = cheng(b, a);
a = cheng(a, a);
n >>= ;
}
return b.m[][];
} int main()
{
int n;
while(scanf("%d", &n), n!=-)
{
printf("%d\n", Fast_MOD(n));
}
return ;
}

(矩阵快速幂) Fibonacci -- poj -- 3070的更多相关文章

  1. 矩阵快速幂 POJ 3070 Fibonacci

    题目传送门 /* 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了.效率很高啊 */ #include <cstdio> #include <algori ...

  2. poj 3070 Fibonacci (矩阵快速幂乘/模板)

    题意:给你一个n,输出Fibonacci (n)%10000的结果 思路:裸矩阵快速幂乘,直接套模板 代码: #include <cstdio> #include <cstring& ...

  3. poj 3070 Fibonacci 矩阵快速幂

    Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. F ...

  4. POJ 3070 Fibonacci 【矩阵快速幂】

    <题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...

  5. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  6. poj 3070 Fibonacci(矩阵快速幂,简单)

    题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...

  7. POJ 3070 Fibonacci(矩阵快速幂)

    题目链接 题意 : 用矩阵相乘求斐波那契数的后四位. 思路 :基本上纯矩阵快速幂. #include <iostream> #include <cstring> #includ ...

  8. POJ 3070 Fibonacci矩阵快速幂 --斐波那契

    题意: 求出斐波那契数列的第n项的后四位数字 思路:f[n]=f[n-1]+f[n-2]递推可得二阶行列式,求第n项则是这个矩阵的n次幂,所以有矩阵快速幂模板,二阶行列式相乘, sum[ i ] [ ...

  9. poj 3070 && nyoj 148 矩阵快速幂

    poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.n ...

  10. POJ 3070 矩阵快速幂解决fib问题

    矩阵快速幂:http://www.cnblogs.com/atmacmer/p/5184736.html 题目链接 #include<iostream> #include<cstdi ...

随机推荐

  1. dmidecode详解

    1.DMI简介 DMI (Desktop Management Interface, DMI)就是帮助收集电脑系统信息的管理系统,DMI信息的收集必须在严格遵照SMBIOS规范的前提下进行. SMBI ...

  2. 罗伯特•盖洛博士(Dr. Robert Charles Gallo)是世界著名的美国生物医学家,他以共同发现了人类免疫缺陷病毒(HIV)――这一导致获得性免疫缺陷综合症(AIDS)的致病源而闻名于世。

    罗伯特•盖洛 开放分类:各国生物学家|生物学家罗伯特•盖洛博士(Dr. Robert Charles Gallo)是世界著名的美国生物医学家,他以共同发现了人类免疫缺陷病毒(HIV)――这一导致获得性 ...

  3. 3类与对象——重拾Java

    面向对象编程的3个特性 1 封装性 面向对象编程核心思想之一就是将数据和对数据的操作封装在一起.通过抽象,即从具体的实例中抽取共同的性质形成一般的概念,比如类的概念. 在实际生活中,我们每时每刻都在与 ...

  4. hibernate 1对1的关系

    hibernate 中1对1的关系分为外键关联和主键关联 外键关联: //多方 public class Students {                                     ...

  5. keras各种优化方法总结 SGDmomentumnesterov

    http://blog.csdn.net/luo123n/article/details/48239963 前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的 ...

  6. 10.9zuoye

    public class fulei { public fulei() { System.out.println("欢迎使用海尔"); } public String Pinpai ...

  7. java并发:volatile关键字

    java并发需要保证原子性,可见性,有序性. http://www.cnblogs.com/expiator/p/9226775.html 一.volatile关键字作用如下: 1.volatile关 ...

  8. android笔记:ListView及ArrayAdapter

    ListView用于展示大量数据,而数据无法直接传递给ListView,需要借助适配器adapter来完成. ArrayAdapter是最常用的adapter,可以通过泛型来指定要适配的数据类型.常见 ...

  9. 求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)

    昨天做了一个题,简化题意后就是求2的n次方对1e9+7的模,其中1<=n<=10100000.这个就算用快速幂加大数也会超时,查了之后才知道这类题是对费马小定理的考察. 费马小定理:假如p ...

  10. VMware虚拟机安装Centos预安装环境图文教程1

    前言: 习惯了微软的各种可视化开发软件环境,突然接触Linux命令式的操作环境,总是会让人有些反感跟抵触的. 经过了几天的研究,发现Linux也并不是那么的深不可测.在配置网站部署环境的时候,系统集成 ...