解题:SDOI 2017 数字表格
反演题,推式子么=。=
$\prod\limits_{d=1}^{min(n,m)}\prod\limits_{i=1}^n\prod\limits_{j=1}^m[gcd(i,j)==d]fib[d]$
把$fib[d]$前提,前面的连乘就跑到指数上去了
$\prod\limits_{d=1}^{min(n,m)}fib[d]^{\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)==d]}$
开始反演那坨指数,等等这玩意不是做过么=。=
$\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)==d]$
$\sum\limits_{i=1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum\limits_{j=1}^{\left\lfloor\frac{m}{d}\right\rfloor}[gcd(i,j)==1]$
$\sum\limits_{i=1}^{min(\left\lfloor\frac{n}{d}\right\rfloor,\left\lfloor\frac{m}{d}\right\rfloor)}μ(i)\left\lfloor\frac{n}{id}\right\rfloor\left\lfloor\frac{m}{id}\right\rfloor$
于是把$id$捉出来,在原来的整个式子里枚举$id$(不是那个$id$,都懂)
$\prod\limits_{k=1}^{min(n,m)}(\prod\limits_{d|k}fib[d]^{μ(\frac{k}{d})})^{\left\lfloor\frac{n}{k}\right\rfloor\left\lfloor\frac{m}{k}\right\rfloor}$
停,可以做了
对于$\prod\limits_{d|k}fib[d]^{μ(\frac{k}{d})}$,预处理,大力把每个数乘到倍数上去,复杂度$O(n\log n)$
对于$\left\lfloor\frac{n}{k}\right\rfloor\left\lfloor\frac{m}{k}\right\rfloor$这个指数,可以数论分块,这样再加个快速幂每次回答复杂度就是$O(\sqrt n\log mod)$了,可能有点卡常?我倒是一次过了
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,M=,mod=1e9+;
int fib[N],ifb[N],pfb[N],ipf[N];
int pri[N],npr[N],mul[N];
int T,n,m,x,y,mn,cnt,ans;
int qpow(int x,int k)
{
if(k==) return x;
int tmp=qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
void exGCD(int a,int b,int &x,int &y)
{
if(!b) {x=,y=; return ;}
exGCD(b,a%b,y,x); y-=a/b*x;
}
int Inv(int b)
{
exGCD(b,mod,x,y);
return (x+mod)%mod;
}
void prework()
{
register int i,j;
npr[]=true,mul[]=,fib[]=,ifb[]=,pfb[]=;
for(i=;i<=M;i++)
{
fib[i]=(fib[i-]+fib[i-])%mod;
ifb[i]=Inv(fib[i]),pfb[i]=;
if(!npr[i])
pri[++cnt]=i,mul[i]=-;
for(j=;j<=cnt&&i*pri[j]<=M;j++)
{
npr[i*pri[j]]=true;
if(i%pri[j]==) break;
else mul[i*pri[j]]=-mul[i];
}
}
for(i=;i<=M;i++)
for(j=i;j<=M;j+=i)
if(mul[j/i]) pfb[j]=1ll*pfb[j]*((~mul[j/i])?fib[i]:ifb[i])%mod;
pfb[]=ipf[]=;
for(i=;i<=M;i++)
{
ipf[i]=Inv(pfb[i]);
pfb[i]=1ll*pfb[i-]*pfb[i]%mod;
ipf[i]=1ll*ipf[i-]*ipf[i]%mod;
}
}
int main()
{
register int i,j;
scanf("%d",&T),prework();
while(T--)
{
scanf("%d%d",&n,&m);
mn=min(n,m),ans=;
for(i=;i<=mn;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans=1ll*ans*qpow(1ll*pfb[j]*ipf[i-]%mod,1ll*(n/i)*(m/i)%(mod-))%mod;
}
printf("%d\n",ans);
}
return ;
}
解题:SDOI 2017 数字表格的更多相关文章
- [SDOI 2017]数字表格
Description 题库链接 记 \(f_i\) 为 \(fibonacci\) 数列的第 \(i\) 项. 求 \[\prod_{i=1}^n\prod_{j=1}^mf_{gcd(i,j)}\ ...
- SDOI 2017 Round1 解题报告
Day 1 T1 数字表格 题目大意 · 求\(\prod\limits_{i=1}^n\prod\limits_{j=1}^mFibonacci(\gcd(i,j))\),\(T\leq1000\) ...
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- BZOJ 4816 数字表格
首先是惯例的吐槽.SDOI题目名称是一个循环,题目内容也是一个循环,基本上过几年就把之前的题目换成另一个名字出出来,喜大普奔亦可赛艇.学长说考SDOI可以考出联赛分数,%%%. 下面放解题报告.并不喜 ...
- BZOJ4816 数字表格
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec Memory Limit: 128 MB Description Doris刚刚学习了fibonacci数列.用f[i ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- 【BZOJ】【2154】Crash的数字表格
莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...
随机推荐
- Java之JSP和Servlet基础知识
JSP基础 JSP起源 JSP,JavaServer Pager的简称.由SUN倡导并联合其它公司创建. JSP是一门脚本语言 JSP可以嵌入到HTML中 JSP拥有Java语言的所有特性 面向对象. ...
- Redis学习(一):CentOS下redis安装和部署
1.基础知识 redis是用C语言开发的一个开源的高性能键值对(key-value)数据库.它通过提供多种键值数据类型来适应不同场景下的存储需求,目前为止redis支持的键值数据类型如下字符串.列表 ...
- DataGridView 复选框 操作大全
DataGridViewCheckBoxColumn dtCheck = new DataGridViewCheckBoxColumn(); dtCheck.DataPropertyName = &q ...
- Scrum Meeting 10.24
成员 已完成任务 下一阶段任务 用时 徐越 阅读后端代码,了解服务器的概念,以及服务器和终端间的通信机制 学习服务器配置 4h 赵庶宏 阅读后端代码,了解服务器的概念,以及服务器和终端间的通信机制 阅 ...
- No.1000_第五次团队会议
光辉的一夜 今夜注定是不平凡的一夜.是崔强同学伟大的一夜. 昨天因为实验室项目,我刚上完编译课就被学院叫走去做项目,当时我就很无奈,因为说好了要和崔强一起实现下午的前端,他写界面我写底层逻辑,这样我们 ...
- 第二阶段每日站立会议First Day
昨天我进行了用户界面的修改,例如按钮的大小,位置,使界面看起来更美观.更简洁 今天准备安装在手机端进行界面效果测试以及进一步完善 遇到的问题:有些按钮由于在之前固定好的布局之中,所以没法移动其位置
- BETA随笔6/7
前言 我们居然又冲刺了·六 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 新方案代码比之前的更简单,但是对场景的要求相应变高了,已经实现,误差感人 代码 ...
- BUAA软工个人作业Week2-代码复审
一. 代码复审Check List 1.概要部分 代码能符合需求和规格说明么? 对-c的测试: 可以看到程序不支持1000000的数独终局输出,读源码发现常量MaxCounts定义为了100000,导 ...
- 软工网络15团队作业8——Beta阶段敏捷冲刺(Day3)
提供当天站立式会议照片一张 每个人的工作 1.讨论项目每个成员的昨天进展 赵铭: 还是在学习知晓云数据库怎么用 吴慧婷:这两天进一步进行界面设计,暂时完成了背单词界面的初步设计. 陈敏: 完成了背单词 ...
- 性能测试问题_tomcat占用内存很高,响应速度很慢
Cronolog 1. 问题描述 Tomcat占用服务器内存过大导致访问变慢 2. 问题原因 查看catalina.out文件过大,写日志时占用内存过大 3. 解决 ...