HDU 4786 生成树 并查集+极大极小值 黑白边 确定选择白边的数量
题意:
给定一个无向图
n 个点 m条无向边
u v val
val == 1 表示边(u, v) 为白边
问能否找到n个点的生成树, 使得白边数为斐波那契数
思路:
并查集求图是否连通( 是否存在生成树)
求出 最多白边树 的 白边数量
求出 最少白边树 的 白边数量
若[最少, 最多] 区间内存在斐波那契数 ,则满足条件
(也就是说,白边的数量是连续有解的)
//YY得证
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string>
#include<queue>
#include<string.h>
#include<map>
#include<set>
#include<stack>
#include<vector>
#include<math.h>
#include<algorithm>
#define N 101010
#define inf 10000000
using namespace std;
inline int Min(int a,int b){return a>b?b:a;}
inline int Max(int a,int b){return a<b?b:a;} int f[N];
int find(int x){return x==f[x]?x:(f[x] = find(f[x]));}
void Union(int u, int v){
int fu = find(u), fv = find(v);
if(fu>fv)
f[fu] = fv;
else
f[fv] = fu;
}
set<int>fib;
int n, m;
struct node{
int u,v,c;
}edge[N];
int edgenum;
bool cmp1(node a,node b){return a.c<b.c;}
bool cmp2(node a,node b){return a.c>b.c;}
int main(){
int T, Cas = 1;scanf("%d",&T);
int i, j, col;
fib.clear();
fib.insert(1);
fib.insert(2);
j=1;
for(i=2;i<=N;){
fib.insert(i+j);
int lala = i;
i = i+j;
j = lala;
}
while(T--){
scanf("%d %d", &n, &m);
for(i=1;i<=n;i++)f[i] = i;
edgenum = 0;
while(m--){
int u,v;
scanf("%d %d %d",&u,&v,&col);
edge[edgenum].u = u;
edge[edgenum].v = v;
edge[edgenum++].c = col; int fx = find(u), fy = find(v);
if(fx == fy)continue;
Union(fx,fy); }
printf("Case #%d: ",Cas++);
for(i=1;i<=n;i++)find(i);
bool su = true;
for(i=1;i<=n;i++)
if(f[i]!=f[1])
{su = false; break;} if(su == false)
{printf("No\n");continue;}
for(i=1;i<=n;i++)f[i] = i;
sort(edge, edge+edgenum, cmp1);
int size = 0, bl=0, bm=0;
for(i=0;i<edgenum;i++)
{
int u =edge[i].u, v=edge[i].v;
int fu = find(u), fv=find(v);
if(fu == fv)continue;
size++;
bl+= edge[i].c;
Union(fu, fv);
if(size==n-1)break;
}
for(i=1;i<=n;i++)f[i] = i;
sort(edge, edge+edgenum, cmp2);
size = 0;
for(i=0;i<edgenum;i++)
{
int u =edge[i].u, v=edge[i].v;
int fu = find(u), fv=find(v);
if(fu == fv)continue;
size++;
bm+= edge[i].c;
Union(fu, fv);
if(size==n-1)break;
} if(fib.upper_bound(bl) == fib.end() ){printf("No\n");continue;}
if((*fib.lower_bound(bl) )>bm){printf("No\n");continue;} printf("Yes\n");
}
return 0;
}
/*
4 2
1 2 1
3 4 1 */
HDU 4786 生成树 并查集+极大极小值 黑白边 确定选择白边的数量的更多相关文章
- HDU 2818 (矢量并查集)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2818 题目大意:每次指定一块砖头,移动砖头所在堆到另一堆.查询指定砖头下面有几块砖头. 解题思路: ...
- hdu 1116 欧拉回路+并查集
http://acm.hdu.edu.cn/showproblem.php?pid=1116 给你一些英文单词,判断所有单词能不能连成一串,类似成语接龙的意思.但是如果有多个重复的单词时,也必须满足这 ...
- Bipartite Graph hdu 5313 bitset 并查集 二分图
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5313 题意: 给出n个顶点,m条边,问最多添加多少条边使之构成一个完全二分图 存储结构: bitset ...
- hdu 3081(二分+并查集+最大流||二分图匹配)
Marriage Match II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 2015 ACM/ICPC Asia Regional Changchun Online HDU - 5441 (离线+并查集)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5441 题意:给你n,m,k,代表n个城市,m条边,k次查询,每次查询输入一个x,然后让你一个城市对(u,v ...
- hdu 3536【并查集】
hdu 3536 题意: 有N个珠子,第i个珠子初始放在第i个城市.有两种操作: T A B:把A珠子所在城市的所有珠子放到B城市. Q A:输出A珠子所在城市编号,该城市有多少个珠子,该珠子转移了 ...
- HDU 1829 分组并查集
题意:有两种性别,每组数据表示是男女朋友,判断输入的几组数据是否有同性恋 思路:http://blog.csdn.net/iaccepted/article/details/24304087 分组并查 ...
- HDU 1198(并查集)
题意:给你11个图,每一个都有管道,然后给一张由这11个正方形中的n个组成的图,判断有几条连通的管道: 思路:在大一暑假的时候做过这道题,当时是当暴力来做的,正解是并查集,需要进行一下转换: 转换1: ...
- HDU 4496 D-City(并查集,逆思维)
题目 熟能生巧...常做这类题,就不会忘记他的思路了... //可以反过来用并查集,还是逐个加边,但是反过来输出...我是白痴.....又没想到 //G++能过,C++却wa,这个也好奇怪呀... # ...
随机推荐
- jQuery selector 选择器
基本选择器 1. id选择器(指定id元素)将id="one"的元素背景色设置为黑色.(id选择器返单个元素) $(document).ready(function () { $( ...
- JS 获取浏览器窗口大小clientWidth、offsetWidth、scrollWidth
常用: JS 获取浏览器窗口大小 // 获取窗口宽度 if (windows.innerWidth) winWidth = windows.innerWidth; else if ((docume ...
- Google日历添加农历、节日和天气插件(步骤)
Google日历添加农历.节日和天气插件(步骤) Google功能非常多,Google日历只是其中一个,而且支持Exchange账户(iPhone,WP7,诺基亚等)和Google账户登录(andro ...
- [置顶] MongoDB 分布式操作——分片操作
MongoDB 分布式操作——分片操作 描述: 像其它分布式数据库一样,MongoDB同样支持分布式操作,且MongoDB将分布式已经集成到数据库中,其分布式体系如下图所示: 所谓的片,其实就是一个单 ...
- Python type类具体的三大分类:metaclasses,classes,instance
Python type类视角中的对象体系需要我们不断的学习,其中我们使用的时候需要注意.下面我们就看看如何才能更好的运用Python type类.下面的文章希望大家有所收获. 在单纯的Python t ...
- poj 1144 Network(割点)
题目链接: http://poj.org/problem?id=1144 思路分析:该问题要求求出无向联通图中的割点数目,使用Tarjan算法即可求出无向联通图中的所有的割点,算法复杂度为O(|V| ...
- CCPC L(水)
Huatuo's Medicine Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others ...
- java实现字符串匹配问题之求两个字符串的最大公共子串
转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/38924981 近期在项目工作中有一个关于文本对照的需求,经过这段时间的学习,总结 ...
- ajax 基础
<html><head><script type="text/javascript">function showHint(str){var xm ...
- Spring data redis的一个bug
起因 前两天上线了一个新功能,导致线上业务的缓存总是无法更新,报错也是非常奇怪,redis.clients.jedis.exceptions.JedisConnectionException: Unk ...