The Accomodation of Students

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3836    Accepted Submission(s): 1797

Problem Description
There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other.

Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don't know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only paris appearing in the previous given set can live in the same room, which means only known students can live in the same room.

Calculate the maximum number of pairs that can be arranged into these double rooms.

 
Input
For each data set:
The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs.

Proceed to the end of file.

Output
If these students cannot be divided into two groups, print "No". Otherwise, print the maximum number of pairs that can be arranged in those rooms.
 
Sample Input
4 4
1 2
1 3
1 4
2 3
6 5
1 2
1 3
1 4
2 5
3 6
 
Sample Output
No
3
 
Source
 
题意:给定n个点m条边的无向图,判断是否为二分图,如果不是输出No,是则输出最大匹配。
判断是否为二分图:dfs,如果某个点u没有赋id,则赋为1,找到所有与他相邻的点,如果存在某个点id和该点相同则return false; 如果id==0则赋为-1*id[u]继续dfs;
求最大匹配用匈牙利算法,注意由于原图是个无向图,是自己人工把他当成二分图,所以如果左边的点1和右边的点2之间有边,则右边的点1和左边的点2之间也有边,所有求出的最大匹配要除以2;
/*
ID: LinKArftc
PROG: 2444.cpp
LANG: C++
*/ #include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll; const int maxn = ;
const int maxm = ; int mp[maxn][maxn];
int linker[maxn];
int id[maxn];
int uN, vN;
int n, m;
bool vis[maxn]; bool dfs(int x) {
for (int i = ; i <= n; i ++) {
if (mp[x][i]) {
if (id[i] == id[x]) return false;
if (id[i] == ) {
id[i] = - * id[x];
if (!dfs(i)) return false;
}
}
}
return true;
} bool dfs1(int u) {
for (int v = ; v <= n; v ++) {
if (mp[u][v] && !vis[v]) {
vis[v] = true;
if (linker[v] == - || dfs1(linker[v])) {//刚开始这地方写成dfs了,罪过呀,写的有点混乱,下次注意!
linker[v] = u;
return true;
}
}
}
return false;
} int hungry() {
memset(linker, -, sizeof(linker));
int ret = ;
for (int i = ; i <= n; i ++) {
memset(vis, , sizeof(vis));
if (dfs1(i)) ret ++;
}
return ret;
} int main() {
//input;
int u, v;
while (~scanf("%d %d", &n, &m)) {
memset(mp, , sizeof(mp));
memset(id, , sizeof(id));
for (int i = ; i <= m; i ++) {
scanf("%d %d", &u, &v);
mp[u][v] = ;
mp[v][u] = ;
}
bool flag = true;
for (int i = ; i <= n; i ++) {
if (!id[i]) {
id[i] = ;
if (!dfs(i)) {
flag = false;
break;
}
}
}
if (!flag) {
printf("No\n");
continue;
} else printf("%d\n", hungry() / );
}
return ;
}

HDU2444(判断是否为二分图,求最大匹配)的更多相关文章

  1. UVALive 2523 Machine Schedule(二分图求最大匹配数)

    题意:有两台机器,上面有多个工作区域,有多个任务,分别可以在两台机器的某一个区域上完成,两台机器一开始都在0区域上工作,每次更改区域,都会重新启动一次,让我们求出最小的重启次数. 思路:将两个区域连线 ...

  2. hdu 2444 The Accomodation of Students 判断是否构成二分图 + 最大匹配

    此题就是求最大匹配.不过需要判断是否构成二分图.判断的方法是人选一点标记为红色(0),与它相邻的点标记为黑色(1),产生矛盾就无法构成二分图.声明一个vis[],初始化为-1.通过深搜,相邻的点不满足 ...

  3. 染色法判断是否是二分图 hdu2444

    用染色法判断二分图是这样进行的,随便选择一个点, 1.把它染成黑色,然后将它相邻的点染成白色,然后入队列 2.出队列,与这个点相邻的点染成相反的颜色 根据二分图的特性,相同集合内的点颜色是相同的,即 ...

  4. uva12083 二分图 求最大独立集 转化为求最大匹配 由题意推出二分图

    这题大白书例题 : Frank 是一个思想有些保守的高中老师,有一次,他需要带一些学生出去旅行,但又怕其中一些学生在旅途中萌生爱意.为了降低这种事情的发生概率,他决定确保带出去的任意两个学生至少要满足 ...

  5. hdu2444The Accomodation of Students (最大匹配+判断是否为二分图)

    题意 首先判断所有的人可不可以分成两部分,每部分内的所有人都相互不认识.如果可以分成 则求两部分最多相互认识的对数. 解题 类似分成两组,同组互不相关,就可能使判断是否为二分图 能否分成两部分 则是判 ...

  6. HDU 2444 The Accomodation of Students(二分图判定+最大匹配)

    这是一个基础的二分图,题意比较好理解,给出n个人,其中有m对互不了解的人,先让我们判断能不能把这n对分成两部分,这就用到的二分图的判断方法了,二分图是没有由奇数条边构成环的图,这里用bfs染色法就可以 ...

  7. HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配)

    HDU 2389 Rain on your Parade / HUST 1164 4 Rain on your Parade(二分图的最大匹配) Description You're giving a ...

  8. The Accomodation of Students---hdu2444(二分图,最大匹配)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2444 题意:有n个学生,m个关系,但是如果a认识b,b认识c,但是a不一定认识c: 求能不能把这n个人 ...

  9. hdu3729 I'm Telling the Truth (二分图的最大匹配)

    http://acm.hdu.edu.cn/showproblem.php?pid=3729 I'm Telling the Truth Time Limit: 2000/1000 MS (Java/ ...

随机推荐

  1. Java并发基础--多线程基础

    一.多线程基础知识 1.进程和线程 进程:是指一个内存中运行的应用程序,每个进程都有一个独立的内存空间,一个应用程序可以同时运行多个进程:进程也是程序的一次执行过程,是系统运行程序的基本单位:系统运行 ...

  2. P4332三叉神经树

    题面 \(Solution\) 通过模拟,我们会发现每次修改 \(x\),只会改变从 \(x\) 向上一段连续的链的输出. 例如将 \(x\) 点从 \(0\) 改为 \(1,\) 那么它会影响从它向 ...

  3. POJ 2186 Popular Cows(强联通+缩点)

    Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...

  4. Android stateMachine分析

    StateMachine与State模式的详细介绍可以参考文章:Android学习 StateMachine与State模式 下面是我对于StateMachine的理解: 先了解下消息处理.看下Sta ...

  5. C++STL——概述

    一.相关介绍 STL 标准模板库 在编写代码的过程中有一些程序经常会被用到,而且需求特别稳定,所以C++中把这些常用的模板做了统一的规范,慢慢的就形成了STL 提供三种类型的组件: 容器.迭代器和算法 ...

  6. java生成唯一的id编号

    GUID是一个128位长的数字,一般用16进制表示.算法的核心思想是结合机器的网卡.当地时间.一个随即数来生成GUID.从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义 ...

  7. [剑指Offer] 27.字符串的排列

    [思路]从第一位开始,判断每一位字符的所有可能性,依此递归. class Solution { public: void PermutationHelp(vector<string> &a ...

  8. input属性 disabled与readonly的区别

    从效果上看 源码 <!DOCTYPE html> <html> <head lang="en"> <meta charset=" ...

  9. JDBC连接数据库的过程

    以连接MySQL为例: (1)加载MySQL数据库连接的驱动程序.到MySQL官网下载该驱动程序jar包,然后把包复制到WEB-INF/lib目录下,则JDBC会调用Class.forName()方法 ...

  10. [Leetcode] Merge two sorted lists 合并两已排序的链表

    Merge two sorted linked lists and return it as a new list. The new list should be made by splicing t ...