*HDU 1115 计算几何
Lifting the Stone
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7674 Accepted Submission(s): 3252
are many secret openings in the floor which are covered by a big heavy
stone. When the stone is lifted up, a special mechanism detects this and
activates poisoned arrows that are shot near the opening. The only
possibility is to lift the stone very slowly and carefully. The ACM team
must connect a rope to the stone and then lift it using a pulley.
Moreover, the stone must be lifted all at once; no side can rise before
another. So it is very important to find the centre of gravity and
connect the rope exactly to that point. The stone has a polygonal shape
and its height is the same throughout the whole polygonal area. Your
task is to find the centre of gravity for the given polygon.
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing a single integer N (3 <= N <= 1000000) indicating the
number of points that form the polygon. This is followed by N lines,
each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These
numbers are the coordinates of the i-th point. When we connect the
points in the given order, we get a polygon. You may assume that the
edges never touch each other (except the neighboring ones) and that they
never cross. The area of the polygon is never zero, i.e. it cannot
collapse into a single line.
exactly one line for each test case. The line should contain exactly
two numbers separated by one space. These numbers are the coordinates of
the centre of gravity. Round the coordinates to the nearest number with
exactly two digits after the decimal point (0.005 rounds up to 0.01).
Note that the centre of gravity may be outside the polygon, if its shape
is not convex. If there is such a case in the input data, print the
centre anyway.
0 5
-5 0
0 -5
11 1
11 11
1 11
6.00 6.00
//1. 质量集中在顶点上
// n个顶点坐标为(xi,yi),质量为mi,则重心
// X = ∑( xi×mi ) / ∑mi
// Y = ∑( yi×mi ) / ∑mi
// 特殊地,若每个点的质量相同,则
// X = ∑xi / n
// Y = ∑yi / n
//2. 质量分布均匀
// 特殊地,质量均匀的三角形重心:
// X = ( x0 + x1 + x2 ) / 3
// Y = ( y0 + y1 + y2 ) / 3
//3. 三角形面积公式:S = ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ; 向量p2p1与向量p3p1叉积/2。
//因此做题步骤:1、将多边形分割成n-2个三角形,根据3公式求每个三角形面积。 //用向量面积 凹多边形时面积会在多边形外面。
// 2、根据2求每个三角形重心。
// 3、根据1求得多边形重心。 //当总面积是0的情况时注意后面除总面积。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
struct nod
{
double x,y;
};
double getarea(nod p0,nod p1,nod p2)
{
return ((p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x))/;
}
int main()
{
int t,n;
nod p0,p1,p2;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
scanf("%lf%lf",&p0.x,&p0.y);
scanf("%lf%lf",&p1.x,&p1.y);
double sumarea=,sumx=,sumy=;
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&p2.x,&p2.y);
double Area=getarea(p0,p1,p2);
sumarea+=Area;
sumx+=(p0.x+p1.x+p2.x)*Area/;
sumy+=(p0.y+p1.y+p2.y)*Area/;
p1=p2;
}
printf("%.2lf %.2lf\n",sumx/sumarea,sumy/sumarea);
}
return ;
}
*HDU 1115 计算几何的更多相关文章
- hdu 1115 Lifting the Stone
题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...
- hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)
Lifting the Stone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- hdu 2108:Shape of HDU(计算几何,判断多边形是否是凸多边形,水题)
Shape of HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- HDU 2202 计算几何
最大三角形 Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- *HDU 2108 计算几何
Shape of HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tota ...
- HDU 5784 (计算几何)
Problem How Many Triangles (HDU 5784) 题目大意 给定平面上的n个点(n<2000),询问可以组成多少个锐角三角形. 解题分析 直接统计锐角三角形较困难,考虑 ...
- hdu 4720 计算几何简单题
昨天用vim练了一道大水题,今天特地找了道稍难一点的题.不过也不是很难,简单的计算几何而已.练习用vim编码,用gdb调试,结果居然1A了,没调试...囧... 做法很简单,无非就是两种情况:①三个巫 ...
- HDU 6205[计算几何,JAVA]
题目链接[http://acm.hdu.edu.cn/showproblem.php?pid=6206] 题意: 给出不共线的三个点,和一个点(x,y),然后判断(x,y)在不在这三个点组成的圆外. ...
- hdu 3320 计算几何(三维图形几何变换)
openGL Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
随机推荐
- - >code vs 1475 m进制转十进制
1475 m进制转十进制 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题解 查看运行结果 题目描述 Description 将m进制数n转化成一个 ...
- PHP 练习题
Php基础知识测试题 本试题共40道选择题,10道判断题,考试时间1个半小时 一:选择题(单项选择,每题2分): 1. LAMP具体结构不包含下面哪种(A ) A:Windows系统 B:Apache ...
- python笔记:windows 下安装 python lxml
原文:http://blog.csdn.net/zhaokuo719/article/details/8209496 windows 环境下安装 lxml python 1.首先保证你的python ...
- [LeetCode] Best Time to Buy and Sell Stock II
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- Could not load file or assembly 'Microsoft.ReportViewer.WebForms, Version=10.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a' or one of its de
页面加载时出现这个错误: Could not load file or assembly 'Microsoft.ReportViewer.WebForms, Version=10.0.0.0, Cul ...
- POJ 2991–Crane【线段树+几何】
题意: 把手臂都各自看成一个向量,则机械手的位置正好是手臂向量之和.旋转某个关节,其实就是把关节到机械手之间的手臂向量统统旋转. 由于手臂很多,要每个向量做相同的旋转操作很费时间.这时就可以想到用线段 ...
- WEB安全:XSS漏洞与SQL注入漏洞介绍及解决方案(转)
对web安全方面的知识非常薄弱,这篇文章把Xss跨站攻击和sql注入的相关知识整理了下,希望大家多多提意见. 对于防止sql注入发生,我只用过简单拼接字符串的注入及参数化查询,可以说没什么好经验,为避 ...
- win7 下安装RVCT
由于项目的需求,需要使用RVCT 3.1: 一看此包的发布日期,老的吓人,但没办法,只能硬着头皮安装: 环境:WIN7 安装软件RVCT 3.1 build 569 license:由于需要编译的代码 ...
- HDU 1848 SG函数博弈
Fibonacci again and again Problem Description 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1 ...
- Maven的配置和使用(二)
Maven仓库 使用Maven带给我们一个比较直接的好处是管理jar包,这些jar包默认地址是在C:\Users\用户名.m2 目录下,我们来修改下这个地址: 现在自己想建立的仓库地址的路径下新建文件 ...