Lifting the Stone

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 7674    Accepted Submission(s): 3252

Problem Description
There
are many secret openings in the floor which are covered by a big heavy
stone. When the stone is lifted up, a special mechanism detects this and
activates poisoned arrows that are shot near the opening. The only
possibility is to lift the stone very slowly and carefully. The ACM team
must connect a rope to the stone and then lift it using a pulley.
Moreover, the stone must be lifted all at once; no side can rise before
another. So it is very important to find the centre of gravity and
connect the rope exactly to that point. The stone has a polygonal shape
and its height is the same throughout the whole polygonal area. Your
task is to find the centre of gravity for the given polygon.
 
Input
The
input consists of T test cases. The number of them (T) is given on the
first line of the input file. Each test case begins with a line
containing a single integer N (3 <= N <= 1000000) indicating the
number of points that form the polygon. This is followed by N lines,
each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These
numbers are the coordinates of the i-th point. When we connect the
points in the given order, we get a polygon. You may assume that the
edges never touch each other (except the neighboring ones) and that they
never cross. The area of the polygon is never zero, i.e. it cannot
collapse into a single line.
 
Output
Print
exactly one line for each test case. The line should contain exactly
two numbers separated by one space. These numbers are the coordinates of
the centre of gravity. Round the coordinates to the nearest number with
exactly two digits after the decimal point (0.005 rounds up to 0.01).
Note that the centre of gravity may be outside the polygon, if its shape
is not convex. If there is such a case in the input data, print the
centre anyway.
 
Sample Input
2
4
5 0
0 5
-5 0
0 -5
4
1 1
11 1
11 11
1 11
 
Sample Output
0.00 0.00
6.00 6.00
 
Source
 
题意:
计算多边形的重心。
代码:

  

 //1.  质量集中在顶点上
// n个顶点坐标为(xi,yi),质量为mi,则重心
//  X = ∑( xi×mi ) / ∑mi
//  Y = ∑( yi×mi ) / ∑mi
//  特殊地,若每个点的质量相同,则
//  X = ∑xi / n
//  Y = ∑yi / n
//2. 质量分布均匀
//  特殊地,质量均匀的三角形重心:
//  X = ( x0 + x1 + x2 ) / 3
//  Y = ( y0 + y1 + y2 ) / 3
//3. 三角形面积公式:S = ( (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) ) / 2 ; 向量p2p1与向量p3p1叉积/2。
//因此做题步骤:1、将多边形分割成n-2个三角形,根据3公式求每个三角形面积。 //用向量面积 凹多边形时面积会在多边形外面。
// 2、根据2求每个三角形重心。
// 3、根据1求得多边形重心。 //当总面积是0的情况时注意后面除总面积。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
struct nod
{
double x,y;
};
double getarea(nod p0,nod p1,nod p2)
{
return ((p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x))/;
}
int main()
{
int t,n;
nod p0,p1,p2;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
scanf("%lf%lf",&p0.x,&p0.y);
scanf("%lf%lf",&p1.x,&p1.y);
double sumarea=,sumx=,sumy=;
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&p2.x,&p2.y);
double Area=getarea(p0,p1,p2);
sumarea+=Area;
sumx+=(p0.x+p1.x+p2.x)*Area/;
sumy+=(p0.y+p1.y+p2.y)*Area/;
p1=p2;
}
printf("%.2lf %.2lf\n",sumx/sumarea,sumy/sumarea);
}
return ;
}

*HDU 1115 计算几何的更多相关文章

  1. hdu 1115 Lifting the Stone

    题目链接:hdu 1115 计算几何求多边形的重心,弄清算法后就是裸题了,这儿有篇博客写得很不错的: 计算几何-多边形的重心 代码如下: #include<cstdio> #include ...

  2. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. hdu 2108:Shape of HDU(计算几何,判断多边形是否是凸多边形,水题)

    Shape of HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. HDU 2202 计算几何

    最大三角形 Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  5. *HDU 2108 计算几何

    Shape of HDU Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 5784 (计算几何)

    Problem How Many Triangles (HDU 5784) 题目大意 给定平面上的n个点(n<2000),询问可以组成多少个锐角三角形. 解题分析 直接统计锐角三角形较困难,考虑 ...

  7. hdu 4720 计算几何简单题

    昨天用vim练了一道大水题,今天特地找了道稍难一点的题.不过也不是很难,简单的计算几何而已.练习用vim编码,用gdb调试,结果居然1A了,没调试...囧... 做法很简单,无非就是两种情况:①三个巫 ...

  8. HDU 6205[计算几何,JAVA]

    题目链接[http://acm.hdu.edu.cn/showproblem.php?pid=6206] 题意: 给出不共线的三个点,和一个点(x,y),然后判断(x,y)在不在这三个点组成的圆外. ...

  9. hdu 3320 计算几何(三维图形几何变换)

    openGL Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

随机推荐

  1. 修改一个CGRect的值

    // 1. 用一个临时变量保存返回值. CGRect temp = self.view.frame; // 2. 给这个变量赋值. temp.size.width = kWIDTH; // 3. 修改 ...

  2. HTML 保存图片到本地

    具体方法有两种  一种是 利用canvas的 toDataUrl  和Html5 里面的 <a>标签里面的 Download 属性 虽然 Download 的兼容性不怎么样  但是在文章后 ...

  3. 把 excel 和 mysq l数据库相互转换

    不用代码轻松搞定,参考http://jingyan.baidu.com/article/fc07f9891cb56412ffe5199a.html 1.excel 转 mysql a.首先确认你的数据 ...

  4. TFS API : 四、工作项查询

    TFS API : 四.工作项查询 本节将讲述如何查询工作项,将用户统计数据. 使用WorkItemStore.Query方法进行查询工作项,其使用的语法和SQL语法类似: Select [标题] f ...

  5. Docker(一)

    Docker是一个能够把开发的应用程序自动部署到容器的开源引擎,它基于Apache2.0开源授权协议发行,以Docker容器为资源分割和调度的基本单位,封装整个软件运行时环境,为开发者和管理员设计的, ...

  6. MATLAB曲面插值及交叉验证

    在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点.插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值.曲面插值是对三维数据进行离 ...

  7. centos7下操作防火墙

    引言 最近使用centos7系统比较频繁,在配置服务器的时候,总是遇到能够ping通服务器,但是就是没有办法访问80端口,这个时候我的直觉告诉我,肯定是防火墙的原因,但是使用iptables却怎么都找 ...

  8. javaScript事件(一)事件流

    一.事件 事件是用户或浏览器自身执行的某种动作,如click,load和mouseover都是事件的名字.事件是javaScript和DOM之间的桥梁.你若触发,我便执行——事件发生,调用它的处理函数 ...

  9. ***HTML +CSS 总结与归纳

    一.首先W3C标准 结构.表现.动作  与  html.css.javascript相对应,它本意是结构表现分离,而且按照html规范编写结构. 标签方面: -所有标签都要小写.关闭.并且合理嵌套,i ...

  10. Lua源码编译之CL编译器编译

    通过使用VC下的CL编译器,可方便地编译Lua源码,而无需构造工程并设置各种选项: 以下以源码Lua5.3.1版本为例,将通过CL编译选项直接编译源码,为方便编译将采用批处理脚本,脚本放置在Lua解压 ...