好久之前看的sg函数了

好像就记住一个nim博弈qwq

第一次啊看的时候很迷,现在感觉可以了qwq


首先我们来看一个其他的游戏。(以下游戏只有两个人参与,且足够聪明)

两个人在一张圆形的桌子上放等大的盘子,最后一个无法放盘子的人输掉比赛

很显然,先手必胜。

为什么? 第一个人可以将盘子放在桌子的中心。

然后只要第二个人可以放置盘子,我们就在其中心对称的位置上放盘子。

如此,只要后手可以放,我先手就一定能放

可以看出,有时候如果处于先手必胜的状态时,模仿对手的策略不妨是个好方法。这可以保证如果游戏可以进行下去的话,先手就一定能进行下去。


我们再来看一个更nim游戏的弱化版

有两个火柴堆,每堆的火柴数不一定相同,每次一个人只能从一堆中选取若干个火柴并取走。没有火柴可取的人输

好像这和上个题没有什么关系qwq

我们假设两个火柴堆的数目都相同。那么肯定是先手必输

为什么?因为后手总可以从另一堆中取的和先手上一次取得一样的火柴。

只要先手可以取,后手就可以取。

所有该游戏的判定条件是,若两堆相等,先手必输,否则,先手必胜,先手总可以将两堆取成一样多


先手必胜时总有一种策略可以转移到后手必败

后手必败总是会转移到先手必胜

好像大佬如此说过


然后我们看van♂整版nim

P1247 取火柴游戏

先说结论,若所有火柴堆异或起来的值为0的话,先手必败,否则先手必胜

啥?mengbi qwq

(ノ`⊿´)ノ为什么和异或结合起来的啊喂

这是得益于毒瘤的二进制和更毒瘤的异或

异或有一个特殊的规律,就是一堆数异或时,若在同一个二进制位上1的个数是偶数,那么这一位异或起来以后是0,否则为1

二进制的话就是可以使用0/1表示所有数字


我们来看上一个游戏,我们将这两堆的剩余的火柴数转变成二进制。

发现我们先手取走一个数,就是改变其二进制为上的1的个数(只考虑奇偶性),而后手再去取的话就是将其奇偶性再变回来


然后我们再回去看为什么异或和是0时先手必输,因为先手拿走了某些火柴时,我们可以根据其拿走火柴的二进制表示,在其他一堆中拿走一些一些数字,使得其异或和重新为0;

怎么搞呢? 我们可以拿走一些数,也就是减某一个数,使得先手拿完后,(啰嗦警告)

所有堆中的每个二进制上的一的个数的和,我们总可以通过加减一个数,达到在某一个二进制位的1的个数进行加一or减一的效果

使得某一位二进制上的1的个数变为偶数。

从而使得游戏又恢复到了一开始的局面

end......

sg函数好像也是这个思想qwq

此题代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<iostream>
using std::sort;
const int maxn=501000;
int data[maxn];
int main()
{
int n;
scanf("%d",&n);
int x=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&data[i]);
x^=data[i];
}
if(x==0)
{
printf("lose");
return 0;
}
for(int i=1;i<=n;i++)
if((data[i]^x)<=data[i])
{
printf("%d %d\n",data[i]-(data[i]^x),i);
data[i]^=x;
break;
}
for(int i=1;i<=n;i++)
printf("%d ",data[i]);
}

取火柴游戏||Nim博弈的更多相关文章

  1. 取球游戏_nyoj_518(博弈-蓝桥杯原题).java

    取球游戏 时间限制: 1000 ms  |  内存限制: 65535 KB 难度: 2   描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下 ...

  2. P1247 取火柴游戏

    题目描述 输入k及k个整数n1,n2,-,nk,表示有k堆火柴棒,第i堆火柴棒的根数为ni:接着便是你和计算机取火柴棒的对弈游戏.取的规则如下:每次可以从一堆中取走若干根火柴,也可以一堆全部取走,但不 ...

  3. 【BZOJ1413】取石子游戏(博弈,区间DP)

    题意:在研究过Nim游戏及各种变种之后,Orez又发现了一种全新的取石子游戏,这个游戏是这样的: 有n堆石子,将这n堆石子摆成一排.游戏由两个人进行,两人轮流操作,每次操作者都可以从最左或最右的一堆中 ...

  4. Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )

    题目链接 题意 : 中文题.点链接 分析 : 前置技能是 SG 函数.NIM博弈变形 每次可取石子是约数的情况下.那么就要打出 SG 函数 才可以去通过异或操作判断一个局面的胜负 打 SG 函数的时候 ...

  5. HDU 2516 取石子游戏(FIB博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  6. BZOJ 1874: [BeiJing2009 WinterCamp]取石子游戏 [Nim游戏 SG函数]

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子,每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略,如 ...

  7. 取石子游戏 BZOJ1874 博弈

    小H和小Z正在玩一个取石子游戏. 取石子游戏的规则是这样的,每个人每次可以从一堆石子中取出若干个石子, 每次取石子的个数有限制,谁不能取石子时就会输掉游戏. 小H先进行操作,他想问你他是否有必胜策略, ...

  8. 洛谷P1247取火柴游戏

    题目:https://www.luogu.org/problemnew/show/P1247 可以知道必败局面为n[1]^n[2]^...^n[k]=x=0: 而若x不等于0,则一定可以取一次使其变为 ...

  9. hdu 2516 取石子游戏 (Fibonacci博弈)

    取石子游戏 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

随机推荐

  1. java Folder transform to Source Folder

    右键文件夹然后选择Build Path ===>Use as Source Folder 里面的东西现在就可以编译了 然后想要让一个源码包变成一个文件夹的话: 只需要再次右键源码包==>选 ...

  2. Coursera 机器学习 第9章(上) Anomaly Detection 学习笔记

    9 Anomaly Detection9.1 Density Estimation9.1.1 Problem Motivation异常检测(Density Estimation)是机器学习常见的应用, ...

  3. 九度oj题目1521:二叉树的镜像

    题目1521:二叉树的镜像 时间限制:1 秒 内存限制:128 兆 特殊判题:否 提交:2061 解决:560 题目描述: 输入一个二叉树,输出其镜像. 输入: 输入可能包含多个测试样例,输入以EOF ...

  4. nyoj 269——VF——————【dp】

    VF 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 Vasya is the beginning mathematician. He decided to make ...

  5. 精简版LINUX系统---wdOS

    wdOS是一个基于CentOS版本精简优化过的Linux服务器系统,网站服务器系统并集成nginx,apache,php,mysql等web应用环境及wdcp管理系统,安装完系统,所有的都安装完成装好 ...

  6. 【Ubuntu】Vritual Box 复制方式克隆

    重装系统后之前安装的虚拟机的镜像全都不见了 ,因为重装系统盘C盘会全部重新被格式化. VtritualBox如果没有指定虚拟机存放位置,默认是会放在C盘的,C:\Users\Administrator ...

  7. [转]v$parameter, v$parameter2, v$system_parameter, v$system_parameter2, v$spparameter区别

    本文转自:http://blog.csdn.net/huang_xw/article/details/617389 1 v$parameter v$parameter显示的是session级的参数. ...

  8. 关于C#的Lock锁思考

    大家都知道多线程并发时候存在一个线程同步的问题,一般使用lock关键字来处理. lock关键字的结果如下: object locker=new object(); lock(locker) { ... ...

  9. 集合之Iterator迭代器

      Iterator迭代器概述: java中提供了很多个集合,它们在存储元素时,采用的存储方式不同.我们要取出这些集合中的元素,可通过一种通用的获取方式来完成. Collection集合元素的通用获取 ...

  10. Topcoder SRM 698 Div1 250 RepeatString(dp)

    题意 [题目链接]这怎么发链接啊..... Sol 枚举一个断点,然后类似于LIS一样dp一波 这个边界条件有点迷啊..fst了两遍... #include<bits/stdc++.h> ...