Manacher算法(马拉车)
学习博客:https://www.cnblogs.com/love-yh/p/7072161.html
首先,得先了解什么是回文串(我之前就不是很了解,汗)。回文串就是正反读起来就是一样的,如“abba”。关于采用时间复杂度为O(n^2),以每个字符为中心去向两端遍历寻找最大回文串的方法,可以见我之前些的博客,戳这里!
当我们遇到字符串为“aaaaaaaaa”,之前的算法就会发生各个回文相互重叠的情况,会产生重复计算,然后就产生了一个问题,能否改进?答案是能,1975年,一个叫Manacher发明了Manacher Algorithm算法,俗称马拉车算法,其时间复杂为O(n)。该算法是利用回文串的特性来避免重复计算的,至于如何利用,且由后面慢慢道来。
在时间复杂度为O(n^2)的算法中,我们在遍历的过程要考虑到回文串长度的奇偶性,比如说“abba”的长度为偶数,“abcba”的长度为奇数,这样在寻找最长回文子串的过程要分别考奇偶的情况,是否可以统一处理了?
马拉车算法:
一)第一步是改造字符串S,变为T,其改造的方法如下:
在字符串S的字符之间和S的首尾都插入一个“#”,如:S=“abba”变为T="#a#b#b#a#" 。我们会发现S的长度是4,而T的长度为9,长度变为奇数了!!那S的长度为奇数的情况时,变化后的长度还是奇数吗?我们举个例子,S=“abcba”,变化为T=“#a#b#c#b#a#”,T的长度为11,所以我们发现其改造的目的是将字符串的长度变为奇数,这样就可以统一的处理奇偶的情况了。
二)第二步,为了改进回文相互重叠的情况,我们将改造完后的T[ i ] 处的回文半径存储到数组P[ ]中,P[ i ]为新字符串T的T[ i ]处的回文半径,表示以字符T[i]为中心的最长回文字串的最端右字符到T[i]的长度,如以T[ i ]为中心的最长回文子串的为T[ l, r ],那么P[ i ]=r-i+1。这样最后遍历数组P[ ],取其中最大值即可。若P[ i ]=1表示该回文串就是T[ i ]本身。举一个简单的例子感受一下:
数组P有一性质,P[ i ]-1就是该回文子串在原字符串S中的长度 ,那就是P[i]-1就是该回文子串在原字符串S中的长度,至于证明,首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*P[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有P[i]个分隔符,剩下P[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为P[i]-1。【这段解释引用 dyx心心】
另外,由于第一个和最后一个字符都是#号,且也需要搜索回文,为了防止越界,我们还需要在首尾再加上非#号字符,实际操作时我们只需给开头加上个非#号字符,结尾不用加的原因是字符串的结尾标识为'\0',等于默认加过了。这样原问题就转化成如何求数组P[ ]的问题了。
三)如何求数组P [ ]
从左往右计算数组P[ ], Mi为之前取得最大回文串的中心位置,而R是最大回文串能到达的最右端的值。
1)当 i <=R时,如何计算 P[ i ]的值了?毫无疑问的是数组P中点 i 之前点对应的值都已经计算出来了。利用回文串的特性,我们找到点 i 关于 Mi 的对称点 j ,其值为 j= 2*Mi-i 。因,点 j 、i 在以Mi 为中心的最大回文串的范围内([L ,R]),
a)那么如果P[j] <R-i (同样是L和j 之间的距离),说明,以点 j 为中心的回文串没有超出范围[L ,R],由回文串的特性可知,从左右两端向Mi遍历,两端对应的字符都是相等的。所以P[ j ]=P[ i ](这里得先从点j转到点i 的情况),如下图:
b)如果P[ j ]>=R-i (即 j 为中心的回文串的最左端超过 L),如下图所示。即,以点 j为中心的最大回文串的范围已经超出了范围[L ,R] ,这种情况,等式P[ j ]=P[ i ]还成立吗?显然不总是成立的!因,以点 j 为中心的回文串的最左端超过L,那么在[ L, j ]之间的字符肯定能在( j, Mi ]找到相等的,由回文串的特性可知,P[ i ] 至少等于R- i,至于是否大于R-i(图中红色的部分),我们还要从R+1开始一一的匹配,直达失配为止,从而更新R和对应的Mi以及P[ i ]。
2)当 i > R时,如下图。这种情况,没法利用到回文串的特性,只能老老实实的一步步去匹配。
相应的代码如下:
#include<iostream>
#include<vector>
using namespace std;
string Manacher(string s)
{
/**改造字符串*/
int len=s.size();
string res="$#";
for(int i=;i<len;i++)
{
res+=s[i];
res+='#';
}
// cout<<res<<endl; //改造后的串 /** 数组 */
vector<int>P(res.size(),);
int Mid=,R=;//Mid为当前选中的回文串的中心 R为当前选中的回文串能到达的最右端的位置
int maxLen=,maxPoint=;//最大回文串长度 最大回文串中心点
for(int i=;i<res.size();i++)
{
P[i]=R>i?min(P[*Mid-i],R-i):;
while(res[i+P[i]]==res[i-P[i]]) P[i]++;//+个$的作用出来了 这样就不会越界了
if(R<i+P[i]) //超过了最右端 则改变中心点和对应的最右端
{
R=i+P[i];
Mid=i;
}
if(maxLen<P[i])//更新最大回文串长度 并记下此时的中心
{
maxLen=P[i];
maxPoint=i;
} }
// cout<<"*"<<maxLen<<endl;
return s.substr((maxPoint-maxLen)/,maxLen-); }
int main()
{
string s;
cin>>s;
cout<<Manacher(s)<<endl;
return ;
}
Manacher算法(马拉车)的更多相关文章
- Manacher算法 (马拉车算法)
#include<iostream> #include<string.h> #include<algorithm> using namespace std; ]; ...
- Manacher算法学习 【马拉车】
好久没写算法学习博客了 比较懒,一直在刷水题 今天学一个用于回文串计算问题manacher算法[马拉车] 回文串 回文串:指的是以字符串中心为轴,两边字符关于该轴对称的字符串 ——例如abaaba 最 ...
- manacher(马拉车)算法详解+例题一道【bzoj3790】【神奇项链】
[pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=39091399 (CSDN好像有bug,不知道为什 ...
- manacher(马拉车)算法
断断续续地看了两天的马拉车算法,可算是给搞明白了(贼开心),这算是自己搞懂的第一个算法了(23333333333333)这个算法照目前自己的理解来看,貌似就只能求个字符串中的回文串(接触这个算法是要求 ...
- Manacher算法(马拉车)求最长回文子串
Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...
- Manacher算法(马拉车算法)浅谈
什么是Manacher算法? 转载自百度百科 Manachar算法主要是处理字符串中关于回文串的问题的,它可以在 O(n) 的时间处理出以字符串中每一个字符为中心的回文串半径,由于将原字符串处理成两倍 ...
- manacher算法_求最长回文子串长度
很好的总结,转自: http://blog.csdn.net/dyx404514/article/details/42061017 总结为:两大情况,三小情况. 两大情况:I. i <= p 1 ...
- [转] Manacher算法详解
转载自: http://blog.csdn.net/dyx404514/article/details/42061017 Manacher算法 算法总结第三弹 manacher算法,前面讲了两个字符串 ...
- Manacher算法学习笔记 | LeetCode#5
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的 ...
- 最长回文子串问题-Manacher算法
转:http://blog.csdn.net/dyx404514/article/details/42061017 Manacher算法 算法总结第三弹 manacher算法,前面讲了两个字符串相算法 ...
随机推荐
- PROC程序设计
通过在过程化编程语言中嵌入SQL语句而开发出的应用程序称为Pro程序. 在C/C++语言中嵌入SQL语句而开发出的应用程序称为Pro*C/C++程序. –在通用编程语言中使用的SQL称为嵌入式SQL: ...
- 20169219 NMap+Wireshark实验报告
Tcpdump介绍 用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中 ...
- MongoDB整理笔记の安装及配置
1.官网下载 地址:http://www.mongodb.org/downloads mongodb-linux-x86_64-2.4.9.tgz (目前为止,64位最新版本) 2.解压 切换到下载目 ...
- samba服务器共享开发【windows下开发linux网站】
//@author:yuan<turing_zhy@163.com> //@date:2018-08-05 //注:码字不易转载请注明出处 //环境准备:ubuntu1~16.04.4 1 ...
- 「BZOJ 1001」狼抓兔子
题目链接 luogu bzoj \(Solution\) 这个貌似没有什么好讲的吧,直接按照这个给的图建图就好了啊,没有什么脑子,但是几点要注意的: 建双向边啊. 要这么写,中间还要写一个\(whil ...
- 进阶Kotlin-常见关键字
常见Kotlin 的关键字 一些常见的语法,我没有写注释. 前面基础的kotlin语法已经弄完了. 现在是高阶kotlin的语法啊. 包括,面向对象,lambad等. 其中面向对象的三大特点:封装 ...
- CSS3 transition 属性——逐渐变慢/匀速/加速/减速/加速然后减速
ease: 1.ease:(逐渐变慢)默认值 2.linear:(匀速) 3.ease-in:(加速) 4.ease-out:(减速) 5.ease-in-out:(加速然后减速) 6.cubic-b ...
- linux系统使用sh文件传参数给matlab程序
linux系统下使用sh文件传参数给matlab程序 (1)编写sh文件 程序以下面的行开始(必须在文件的第一行): #!/bin/sh 定义需要传递的参数,用双引号引起,参数之间使用逗号或分 ...
- VMware虚拟机下安装CentOS系统超详细教程
链接:https://jingyan.baidu.com/article/fdffd1f8736173f3e98ca1e3.html 1.步骤一.工具准备 1.物理计算机一台 配置要求: 操作系统:w ...
- 查看linux操作系统的版本等信息
1.查看操作系统是32位还是64位的命令: (1)getconf LONG_BIT (2)uname -a (3)uname -m (4)arch (5)file /sbin/init 2.查看操作系 ...