ZOJ - 2042 模运算DP
解法见网上参考
这种只判断可达性的DP一般用bool
除非int能得到更多的信息
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e4+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
bool dp[maxn][111];
int a[maxn];
int main(){
int T=read();
while(T--){
int n=read();
int k=read();
memset(dp,0,sizeof dp);
rep(i,1,n){
a[i]=read();
a[i]=(a[i]%k+k)%k;//[0,k-1]
}
dp[0][0]=1;dp[1][a[1]]=1;
rep(i,2,n){
rep(j,0,k-1){
dp[i][(j+a[i]+k)%k]|=dp[i-1][j];
dp[i][(j-a[i]+k)%k]|=dp[i-1][j];//note
}
}
if(dp[n][0]) printf("Divisible\n");
else printf("Not divisible\n");
if(T) enter;
}
return 0;
}
ZOJ - 2042 模运算DP的更多相关文章
- [ACM] ZOJ 3725 Painting Storages (DP计数+组合)
Painting Storages Time Limit: 2 Seconds Memory Limit: 65536 KB There is a straight highway with ...
- mysql中的优化, 简单的说了一下垂直分表, 水平分表(有几种模运算),读写分离.
一.mysql中的优化 where语句的优化 1.尽量避免在 where 子句中对字段进行表达式操作select id from uinfo_jifen where jifen/60 > 100 ...
- 数论 : 模运算法则(poj 1152)
题目:An Easy Problem! 题意:求给出数的最小进制. 思路:暴力WA: discuss中的idea: 给出数ABCD,若存在n 满足 (A* n^3 +B*n^2+C*n^1+D*n^0 ...
- poj 3980 取模运算
取模运算 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10931 Accepted: 6618 Description ...
- c++ 模运算
在数学里,"模运算"也叫"求余运算",用mod来表示模运算. 对于 a mod b 可以表示为 a = q(商)*b(模数) + r(余数),其中q表示商,b表 ...
- #数论-模运算#POJ 1150、1284、2115
1.POJ 1150 The Last Non-zero Digit #质因数分解+模运算分治# 先贴两份题解: http://www.hankcs.com/program/algorithm/poj ...
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
- Numpy 基本除法运算和模运算
基本算术运算符+.-和*隐式关联着通用函数add.subtract和multiply 在数组的除法运算中涉及三个通用函数divide.true_divide和floor_division,以及两个对应 ...
- java 取模运算% 实则取余 简述 例子 应用在数据库分库分表
java 取模运算% 实则取余 简述 例子 应用在数据库分库分表 取模运算 求模运算与求余运算不同.“模”是“Mod”的音译,模运算多应用于程序编写中. Mod的含义为求余.模运算在数论和程序设计中 ...
随机推荐
- 409. Longest Palindrome 最长对称串
[抄题]: Given a string which consists of lowercase or uppercase letters, find the length of the longes ...
- MRPT - Mobile Robot Programming Toolkit
1. https://www.mrpt.org/Building_and_Installing_Instructions#1_Prerequisites P1. error C2371: “int32 ...
- Java方法学习疑问
此方法不理解 finalize() 方法 Java允许定义这样的方法,它在对象被垃圾收集器析构(回收)之前调用,这个方法叫做finalize( ),它用来清除回收对象. 例如,你可以使用finaliz ...
- Git安装和常用命令
Git是目前世界上最先进的分布式版本控制系统!!! Git能自动帮我们记录每次文件的改动,还可以让同事协作编辑. 接下来,简单的介绍下Git的安装和常用命令: Git安装: 1.Windows系统,进 ...
- C#中对DataTable进行全连接后group by,orderby
var result = from temp2 in ( from u in u ...
- 希尔伯特空间(Hilbert Space)是什么?
希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...
- 【转】Android android listview的HeadView左右切换图片(仿新浪,网易,百度等切换图片)
首先我们还是看一些示例:(网易,新浪,百度) 下面我简单的介绍下实现方法:其实就是listview addHeaderView.只不过这个view是一个可以切换图片的view,至于这个vie ...
- 解决"要执行请求的操作,WordPress需要访问您网页服务器的权限"
比如我们在VPS主机中创建WordPress站点的时候,会有需要在线安装主题.插件等,但是点击下载安装的时候会有"要执行请求的操作,WordPress需要访问您网页服务器的权限. 请输入您的 ...
- xmlreader与xmlwriter里的几个坑与解决方案
加载超过100M的xml文件时(可能不是很常见),XmlDocument这种全部加载到内存里的模式就有点不友好了,耗时长.内存高. 这时用xmlreader就会有自行车换超跑的感觉,但其间遇到几个坑, ...
- JavaScript 如何工作:渲染引擎和性能优化技巧
翻译自:How JavaScript works: the rendering engine and tips to optimize its performance 这是探索 JavaScript ...