一本通1635【例 5】Strange Way to Express Integers
1635:【例 5】Strange Way to Express Integers


sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果

随便解释下给以后的自己听:K是要求的数字
第一个读入的A1,Mod1不用改,从2开始做,把Mod2改成LCM,A2改成Ans,接着搞3
/*
原式:
X = A[1] (%Mod[1])
X = A[2] (%Mod[2])
...
X = A[n] (%Mod[n]) K[1]*Mod[1]+A[1] = X
K[2]*Mod[2]+A[2] = X 易知:
K[1]*Mod[1]+A[1] = K[2]*Mod[2]+A[2]
K[1]*Mod[1]-K[2]*Mod[2] = A[2]-A[1]
K[1]*Mod[1]+K[2]*Mod[2] = A[2]-A[1] (类ax+by=c的形式)
Exgcd解上式得到
Ans = K[1]*Mod[1]+A[1] = K[2]*Mod[2]+A[2](这是这个方程的特解)
通解 = Ans+KL*LCM(Mod[1],Mod[2])
易知通解P 满足 P%Mod[1] = A[1] , P%Mod[2] = A[2]
然后可得合并后的式子 P%LCM = Ans
下一个式子就变成了
KL*LCM+Ans = K[3]*Mod[3]+A[3]
KL*LCM-K[3]*Mod[3] = A[3]-Ans
(就是把前一个的Mod[i]变为LCM,A[i]变成Ans)
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const ll N=;
int n;
ll A[N],Mod[N];
inline ll gcd(ll x,ll y)
{
return (!y)?(x):(gcd(y,x%y));
}
inline void Exgcd(ll a,ll b,ll &X,ll &Y)
{
if(b==)
{
X=;
Y=;
return;
}
Exgcd(b,a%b,X,Y);
ll XX=X,YY=Y;
X=YY;
Y=XX-a/b*YY;
return;
}
inline ll Solve()
{
int i;
ll a,b,c,r,X,Y,LCM=Mod[],Ans=A[];
for(i=;i<=n;i++)
{
a=Mod[i-];
b=Mod[i];
c=A[i]-A[i-];
r=gcd(a,b);
if(c%r) return -; Exgcd(a,b,X=,Y=);
X=X*c/r;
ll tmp=b/r;
X=(X>=)?(X%tmp):(X%tmp+tmp); LCM=LCM*b/r;
Mod[i]=LCM;
Ans=X*Mod[i-]+A[i-];
Ans%=LCM;
A[i]=Ans;
}
return Ans;
}
int main()
{
// freopen("2.in","r",stdin);
// freopen("my.out","w",stdout);
int i;
while(~scanf("%d",&n))
{
for(i=;i<=n;i++)
{
R(Mod[i]); R(A[i]);
}
Wl(Solve());
}
return ;
}
/*
input
2
8 7
11 9
output
31 input
3
91 26
62 49
95 80
3
23 9
89 80
72 15
output
409435
36303
*/
一本通1635【例 5】Strange Way to Express Integers的更多相关文章
- Strange Way to Express Integers
I. Strange Way to Express Integers 题目描述 原题来自:POJ 2891 给定 2n2n2n 个正整数 a1,a2,⋯,ana_1,a_2,\cdots ,a_na ...
- 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)
0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...
- poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 9472 ...
- POJ2891——Strange Way to Express Integers(模线性方程组)
Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...
- [POJ 2891] Strange Way to Express Integers
Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total Submissions: 10907 ...
- 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)
F - Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format: ...
- Strange Way to Express Integers(中国剩余定理+不互质)
Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...
- POJ2891 Strange Way to Express Integers
题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...
- poj 2981 Strange Way to Express Integers (中国剩余定理不互质)
http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 13 ...
随机推荐
- web.py利用模板的详细步骤
<python网络编程学习笔记(10):webpy框架>(http://www.cnblogs.com/xiaowuyi/archive/2012/11/15/2771099.html#3 ...
- Android 调用手机上第三方百度地图并传值给地图
//移动APP调起Android百度地图方式举例 Intent intent = null; try { // intent = Intent.getIntent("intent://map ...
- APP快速搭建框架
AppDelegate: - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDicti ...
- python基础1之python介绍、安装、变量和字符编码、数据类型、输入输出、数据运算、循环
开启python之路 内容概要: 一.python介绍 二.安装 三.第一个python程序 四.变量和字符编码 五.用户输入 六.数据类型 七.一切皆对象 八.数据运算 九.if else 流程判断 ...
- 2017-2018-2 20155224『网络对抗技术』Exp4:恶意代码分析
原理与实践说明 实践目标 监控你自己系统的运行状态,看有没有可疑的程序在运行. 分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或sysinternals,systr ...
- VS编程,WPF中,获取鼠标相对于当前屏幕坐标的一种方法
原文:VS编程,WPF中,获取鼠标相对于当前屏幕坐标的一种方法 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307934/article/det ...
- QQ快速登录协议分析以及风险反思
前言 众所周知,Tencent以前使用Activex的方式实施QQ快速登录,现在快速登录已经不用控件了.那现在用了什么奇葩的方法做到Web和本地的应用程序交互呢?其实猜测一下,Web和本地应用进行交互 ...
- 全面掌握IO(输入/输出流)
File类: 程序中操作文件和目录都可以使用File类来完成即不管是文件还是目录都是使用File类来操作的,File能新建,删除,重命名文件和目录,但File不能访问文件内容本身,如果需要访问文件本身 ...
- DMS专线联通外网测试
配置 CE Ping PE: “本地链接”-->属性-->"Internet 协议版本4(TCP/IPv4)",选择“使用下面的IP”,填写“172.16.10.21” ...
- 用10分钟,搭建图像处理编程环境,0失败!(python语言,windows系统)
以前,你可能看过很多的文章,开始搭建一个图像处理的编程环境. 结果,按照教程一步一步做的时候,总是出现各种各样的问题. 就算成功了,后续开发过程中要用到不同版本的opencv,不同版本python,更 ...