BZOJ5461 PKUWC2018Minimax(概率期望+线段树合并+动态规划)
离散化后,容易想到设f[i][j]为i节点权值为j的概率,不妨设j权值在左子树,则有f[i][j]=f[lson][j](pi·f[rson][1~j]+(1-pi)·f[rson][j~m])。
考虑用线段树合并优化这个dp。记录前缀和,合并某节点时,若某棵线段树在该节点处为空,给另一棵线段树打上乘法标记即可。注意前缀和不要算成合并后的了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 300010
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p[N],a[N],b[N],fa[N],root[N],t,ans,cnt;
struct data{int to,nxt;
}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
struct data2{int l,r,x,lazy;
}tree[N<<];
void ins(int &k,int l,int r,int x)
{
if (!k) k=++cnt;tree[k].x=;
if (l==r) return;
int mid=l+r>>;
if (x<=mid) ins(tree[k].l,l,mid,x);
else ins(tree[k].r,mid+,r,x);
}
void update(int k,int x)
{
if (!k) return;
tree[k].x=1ll*tree[k].x*x%P;
if (tree[k].lazy) tree[k].lazy=1ll*tree[k].lazy*x%P;
else tree[k].lazy=x;
}
void down(int k){update(tree[k].l,tree[k].lazy),update(tree[k].r,tree[k].lazy),tree[k].lazy=;}
int query(int k,int l,int r,int x)
{
if (!k) return ;
if (l==r) return tree[k].x;
if (tree[k].lazy) down(k);
int mid=l+r>>;
if (x<=mid) return query(tree[k].l,l,mid,x);
else return query(tree[k].r,mid+,r,x);
}
int merge(int x,int y,int l,int r,int s0,int s1,int p)
{
if (tree[x].lazy) down(x);
if (tree[y].lazy) down(y);
if (!x||!y)
{
if (!x) x=y,swap(s0,s1);
update(x,(1ll*p*s1+1ll*(P+-p)*(P+-s1))%P);
return x;
}
if (l<r)
{
int mid=l+r>>;
tree[x].r=merge(tree[x].r,tree[y].r,mid+,r,(s0+tree[tree[x].l].x)%P,(s1+tree[tree[y].l].x)%P,p);
tree[x].l=merge(tree[x].l,tree[y].l,l,mid,s0,s1,p),
tree[x].x=(tree[tree[x].l].x+tree[tree[x].r].x)%P;
}
return x;
}
void dfs(int k)
{
int s=;
for (int i=p[k];i;i=edge[i].nxt)
dfs(edge[i].to),s++;
if (s==) ins(root[k],,m,a[k]);
else if (s==) root[k]=root[edge[p[k]].to];
else root[k]=merge(root[edge[p[k]].to],root[edge[edge[p[k]].nxt].to],,m,,,a[k]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5461.in","r",stdin);
freopen("bzoj5461.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++)
{
int x=read();
fa[i]=x,addedge(x,i);
}
for (int i=;i<=n;i++)
{
a[i]=read();
if (p[i]) a[i]=1ll*a[i]*%P;
else b[++m]=a[i];
}
sort(b+,b+m+);
for (int i=;i<=n;i++) if (!p[i]) a[i]=lower_bound(b+,b+m+,a[i])-b;
dfs();
for (int i=;i<=m;i++)
{
int x=query(root[],,m,i);
ans=(ans+1ll*i*b[i]%P*x%P*x)%P;
}
cout<<ans;
return ;
}
BZOJ5461 PKUWC2018Minimax(概率期望+线段树合并+动态规划)的更多相关文章
- [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...
- LOJ2537. 「PKUWC2018」Minimax【概率DP+线段树合并】
LINK 思路 首先暴力\(n^2\)是很好想的,就是把当前节点概率按照权值大小做前缀和和后缀和然后对于每一个值直接在另一个子树里面算出贡献和就可以了,注意乘上选最大的概率是小于当前权值的部分,选最小 ...
- Codeforces 700E. Cool Slogans 字符串,SAM,线段树合并,动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/CF700E.html 题解 首先建个SAM. 一个结论:对于parent树上任意一个点x,以及它所代表的子树内任 ...
- 【BZOJ5469】[FJOI2018]领导集团问题(动态规划,线段树合并)
[BZOJ5469][FJOI2018]领导集团问题(动态规划,线段树合并) 题面 BZOJ 洛谷 题解 题目就是让你在树上找一个最大的点集,使得两个点如果存在祖先关系,那么就要满足祖先的权值要小于等 ...
- loj2537 「PKUWC2018」Minimax 【概率 + 线段树合并】
题目链接 loj2537 题解 观察题目的式子似乎没有什么意义,我们考虑计算出每一种权值的概率 先离散化一下权值 显然可以设一个\(dp\),设\(f[i][j]\)表示\(i\)节点权值为\(j\) ...
- LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)
题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...
- BZOJ.5461.[PKUWC2018]Minimax(DP 线段树合并)
BZOJ LOJ 令\(f[i][j]\)表示以\(i\)为根的子树,权值\(j\)作为根节点的概率. 设\(i\)的两棵子树分别为\(x,y\),记\(p_a\)表示\(f[x][a]\),\(p_ ...
- LOJ2537 PKUWC2018 Minimax 树形DP、线段树合并
传送门 题意:自己去看 首先可以知道,每一个点都有几率被选到,所以$i$与$V_i$的关系是确定了的. 所以我们只需要考虑每一个值的取到的概率. 很容易设计出一个$DP$:设$f_{i,j}$为在第$ ...
- bzoj 4631: 踩气球 线段树合并
4631: 踩气球 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 265 Solved: 136[Submit][Status][Discuss] ...
随机推荐
- MVC的BundleConfig应用
1.MVC可以通过BundleConfig类来配置css和js的统一引用,分别通过StyleBundle和ScriptBundle来创建. 2.可以在母版页中统一加载设置在BundleConfig.c ...
- lucas定理的证明
http://baike.baidu.com/link?url=jJgkOWPSRMobN7Zk4kIrQAri8m0APxcxP9d-C6qSkIuembQekeRwUoEoBd6bwdidmoCR ...
- Docker搭建Mysql容器
转载自:http://blog.csdn.net/Mungo/article/details/78521832?locationNum=9&fps=1 本文介绍如何使用docker迅速搭建My ...
- c# C#获取屏幕鼠标坐标点颜色
[DllImport("user32.dll")] private static extern IntPtr GetDC(IntPtr hwnd); [DllImport(&quo ...
- 2017-2018-2 20155203《网络对抗技术》Exp2 后门原理与实践
基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 通过下载带后门的程序或者点开带有后门的软件,或者后门本身就在我的系统里: (2)例举你知道的后门如何启动起来(win及linux) ...
- 20155330 《网络对抗》 Exp9 web安全基础实践
20155330 <网络对抗> Exp9 web安全基础实践 实验问题回答 SQL注入攻击原理,如何防御 原理:SQL注入攻击值得是通过构建特殊的输入作为参数传入web应用程序,而这些输入 ...
- [清华集训2015 Day1]主旋律-[状压dp+容斥]
Description Solution f[i]表示状态i所代表的点构成的强连通图方案数. g[i]表示状态i所代表的的点形成奇数个强连通图的方案数-偶数个强连通图的方案数. g是用来容斥的. 先用 ...
- pygame 入门实例
本文基于win7(64) + py3.5(64)环境. 本文是这里的一篇学习笔记.加入了自己的理解. 本文最终目的是实现一个飞机躲避导弹的游戏. 1.核心概念 pygame 的核心概念有: Surfa ...
- 洛谷 P3302 [SDOI2013]森林
->题目链接 题解: #include<queue> #include<cstdio> #include<cstring> #include<iostr ...
- 【LG3768】简单的数学题
[LG3768]简单的数学题 题面 求 \[ (\sum_{i=1}^n\sum_{j=1}^nij\text{gcd}(i,j))\text{mod}p \] 其中\(n\leq 10^{10},5 ...