Boke and Tsukkomi

                                                                              Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
                                                                                                           Total Submission(s): 1215    Accepted Submission(s): 386

Problem Description
A new season of Touhou M-1 Grand Prix is approaching. Girls in Gensokyo cannot wait for participating it. Before the registration, they have to decide which combination they are going to compete as. Every girl in Gensokyo is both a boke (funny girl) and a tsukkomi
(straight girl). Every candidate combination is made up of two girls, a boke and a tsukkomi. A girl may belong to zero or more candidate combinations, but one can only register as a member of one formal combination. The host of Touhou M-1 Grand Prix hopes
that as many formal combinations as possible can participate in this year. Under these constraints, some candidate combinations are actually redundant as it\'s impossible to register it as a formal one as long as the number of formal combinations has to be
maximized. So they want to figure out these redundant combinations and stop considering about them.
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case contains two integers: 1 ≤ N ≤ 40 and 1 ≤ M ≤ 123, where N is the number of girls in Gensokyo, and M is the number of candidate combinations. The following M lines are M candidate combinations, one by each line.
Each combination is represented by two integers, the index of the boke girl 1 ≤ Bi ≤ N and the index of the tsukkomi girl 1 ≤ Ti ≤ N, where Bi != Ti.
 
Output
For each test case, output the number of redundant combinations in the first line. Then output the space-separated indexes of the redundant combinations in ascending order in the second line.
 
Sample Input
4 4
1 3
2 3
2 4
3 1
6 6
1 2
3 2
3 4
5 2
5 4
5 6
 
Sample Output
1
2
3
2 4 5
 
Author
Zejun Wu (watashi)
 
Source
 

———————————————————————————————

题意:有n个女孩,她们之间有k对可能的组合,但参赛时每个人只能参加一个组合,在组合数量最大化时有些组合是多余的,但使组合数量最大化可能有多种方式,找出这些多余的组合

解题思路:一般图匹配带花树,这题不能这样判断,当一个组合不选择时,组合数量仍能达到最大化,它就是多余组合,因为可能选了这个组合也能使组合数量达到最大化。应该固定一个组合,若其他组合形成的组合数量等于之前组合数量减一,那么它就不是多余的,否则它就是多余的。也就是说要让剩余的组合无论怎么选都能达到组合数量最大化

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits>
using namespace std; #define LL long long
const int INF = 0x3f3f3f3f; const int MAXN = 250;
int N; //点的个数,点的编号从1到N
bool Graph[MAXN][MAXN];
int Match[MAXN];
bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN];
int Head,Tail;
int Queue[MAXN];
int Start,Finish;
int NewBase;
int Father[MAXN],Base[MAXN];
int a[MAXN],b[MAXN],ans[MAXN]; void Push(int u)
{
Queue[Tail] = u;
Tail++;
InQueue[u] = true;
}
int Pop()
{
int res = Queue[Head];
Head++;
return res;
}
int FindCommonAncestor(int u,int v)
{
memset(InPath,false,sizeof(InPath));
while(true)
{
u = Base[u];
InPath[u] = true;
if(u == Start) break;
u = Father[Match[u]];
}
while(true)
{
v = Base[v];
if(InPath[v])break;
v = Father[Match[v]];
}
return v;
}
void ResetTrace(int u)
{
int v;
while(Base[u] != NewBase)
{
v = Match[u];
InBlossom[Base[u]] = InBlossom[Base[v]] = true;
u = Father[v];
if(Base[u] != NewBase) Father[u] = v;
}
}
void BloosomContract(int u,int v)
{
NewBase = FindCommonAncestor(u,v);
memset(InBlossom,false,sizeof(InBlossom));
ResetTrace(u);
ResetTrace(v);
if(Base[u] != NewBase) Father[u] = v;
if(Base[v] != NewBase) Father[v] = u;
for(int tu = 1; tu <= N; tu++)
if(InBlossom[Base[tu]])
{
Base[tu] = NewBase;
if(!InQueue[tu]) Push(tu);
}
}
void FindAugmentingPath()
{
memset(InQueue,false,sizeof(InQueue));
memset(Father,0,sizeof(Father));
for(int i = 1; i <= N; i++)
Base[i] = i;
Head = Tail = 1;
Push(Start);
Finish = 0;
while(Head < Tail)
{
int u = Pop();
for(int v = 1; v <= N; v++)
if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v))
{
if((v == Start) || ((Match[v] > 0) && Father[Match[v]] > 0))
BloosomContract(u,v);
else if(Father[v] == 0)
{
Father[v] = u;
if(Match[v] > 0)
Push(Match[v]);
else
{
Finish = v;
return;
}
}
}
}
}
void AugmentPath()
{
int u,v,w;
u = Finish;
while(u > 0)
{
v = Father[u];
w = Match[v];
Match[v] = u;
Match[u] = v;
u = w;
}
}
void Edmonds()
{
memset(Match,0,sizeof(Match));
for(int u = 1; u <= N; u++)
if(Match[u] == 0)
{
Start = u;
FindAugmentingPath();
if(Finish > 0)AugmentPath();
}
} int main()
{ int u,v,m;
while(~scanf("%d%d",&N,&m))
{
memset(Graph,false,sizeof(Graph)); for(int i=1; i<=m; i++)
{
scanf("%d%d",&a[i],&b[i]);
Graph[a[i]][b[i]] = Graph[b[i]][a[i]] = true;
}
Edmonds();
int tot=0;
for(int i=1; i<=N; i++)
if(Match[i]>0)
tot++;
int cnt=0;
for(int i=1; i<=m; i++)
{
int aa=a[i],bb=b[i];
memset(Graph,false,sizeof(Graph)); for(int i=1; i<=m; i++)
{
if(a[i]==aa||b[i]==aa||a[i]==bb||b[i]==bb)
continue;
Graph[a[i]][b[i]] = Graph[b[i]][a[i]] = true;
} Edmonds();//进行匹配 int tt=0;
for(int i=1; i<=N; i++)
if(Match[i]>0)
tt++;
if(tt!=tot-2)
ans[cnt++]=i; } printf("%d\n",cnt);
int q=0;
for(int i=0; i<cnt; i++)
{
if(q++)
printf(" ");
printf("%d",ans[i]);
}
printf("\n");
} return 0;
}

Hdu4687 Boke and Tsukkomi的更多相关文章

  1. HDU-4687 Boke and Tsukkomi 带花树,枚举

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4687 题意:给一个无向图,求所有的最大匹配的情况所不包含的边.. 数据比较小,直接枚举边.先求一次最大 ...

  2. HDU 4687 Boke and Tsukkomi (一般图匹配带花树)

    Boke and Tsukkomi Time Limit: 3000/3000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Othe ...

  3. HDOJ 4687 Boke and Tsukkomi 一般图最大匹配带花树+暴力

    一般图最大匹配带花树+暴力: 先算最大匹配 C1 在枚举每一条边,去掉和这条边两个端点有关的边.....再跑Edmonds得到匹配C2 假设C2+2==C1则这条边再某个最大匹配中 Boke and ...

  4. hdu 4687 Boke and Tsukkomi

    Dancing link twice. Find the maximum combination numbers in the first time. Enumerate each node, dan ...

  5. HDU 4687 Boke and Tsukkomi (一般图最大匹配)【带花树】

    <题目链接> 题目大意: 给你n个点和m条边,每条边代表两点具有匹配关系,问你有多少对匹配是冗余的. 解题分析: 所谓不冗余,自然就是这对匹配关系处于最大匹配中,即该匹配关系有意义.那怎样 ...

  6. HDU 4687 Boke and Tsukkomi 一般图匹配,带花树,思路,输出注意空行 难度:4

    http://acm.hdu.edu.cn/showproblem.php?pid=4687 此题求哪些边在任何一般图极大匹配中都无用,对于任意一条边i,设i的两个端点分别为si,ti, 则任意一个极 ...

  7. 2013 Multi-University Training Contest 9

    HDU-4687 Boke and Tsukkomi 题意:给定一个简单图,询问哪些边如果选择的话会使得最大的连边数减少. 解法:套用一般图的最大匹配算法(带花树)先算出最大匹配数,然后枚举一条边被选 ...

  8. [kuangbin带你飞]专题十 匹配问题

        A-L 二分匹配 M-O 二分图多重匹配 P-Q 二分图最大权匹配 R-S 一般图匹配带花树 模板请自己找     ID Origin Title   61 / 72 Problem A HD ...

  9. 二分图水一波~~~~d带你飞

    Current Time: 2016-03-11 17:45:36 Contest Type: Public Start Time: 2016-03-04 13:00:00 Contest Statu ...

随机推荐

  1. iOS.Location-Based Service

    基于位置区域的服务 1. 背景 Ref[1] 在iOS设备锁屏的状态下,App的icon会出现在屏幕的左下角. iOS 8 Feature: Location-based Lockscreen App ...

  2. 全基因组测序 Whole Genome Sequencing

    全基因组测序 Whole Genome Sequencing 全基因组测序(Whole Genome Sequencing,WGS)是利用高通量测序平台对一种生物的基因组中的全部基因进行测序,测定其 ...

  3. java中的内存模型

    概述 Java平台自动集成了线程以及多处理器技术,这种集成程度比Java以前诞生的计算机语言要厉害很多,该语言针对多种异构平台的平台独立性而使用的多线程技术支持也是具有开拓性的一面,有时候在开发Jav ...

  4. delphi程序设计改进可读性一法

    Delphi,Lazarus程序设计改进一法 作者:steven QQ:1565498246 Delphi/Lazarus有一个思想就是方法.函数名调用,后边可以不使用括号(),比如调用函数Now,这 ...

  5. [Robot Framework] Robot Framework里面的变量怎么知道是在哪里定义的?

    看变量在哪里定义的:Ctrl+Alt+Space

  6. Spring ApplicationContext(八)事件监听机制

    Spring ApplicationContext(八)事件监听机制 本节则重点关注的是 Spring 的事件监听机制,主要是第 8 步:多播器注册:第 10 步:事件注册. public void ...

  7. java 23种设计模式学习。

    一.3大类设计模式:创建型,结构型,行为型. a.5种创建型模式:工厂方法,抽象工厂,单例,建造者,原型. b.7种结构型模式:适配器,装饰器,代理,外观,桥接,组合,享元. c.11种行为型模式:策 ...

  8. swift MD5 加密方法

    引入OC类库 md5.h: #import <UIKit/UIKit.h> @interface Md5Controller : UIViewController @end md5.m: ...

  9. 事务ACID如何定义,事务隔离性解决的问题

    挚享科技 2018.4.8 事务的四个特性: 1. 原子性: 同一个事务的多个操作,要么都成功,要么全部失败回滚. 2. 一致性: 事务必须确保数据库从一个一致性状态变换为另一个一致性状态. 其实就是 ...

  10. is not allowed to connect to this MySQL server解决办法

    GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%' IDENTIFIED BY 'mypassword' WITH GRANT OPTION; myuser:代表你 ...