1.背景

   项目须要,打算用python实现矩阵的去噪和归一化。用numpy这些数学库没有找到非常理想的函数。所以一怒之下自己用标准库写了一个去噪和归一化的算法,效率有点低,只是还能用,大家假设有须要能够拿去。
 (1)去噪算法:依据概率论的知识,假设一组数据服从正态分布,我们设均值是n,方差是v,那么对于每一个离散数值有百分之九十二以上的概率会在(n-3*v,n+3*v)的区间内。

所以这里的去噪功能主要是实现假设超出了区间就将这个值标记为区间所能容忍最大值。

 (2)归一化:找到输入队列最大值max。最小值min。对随意一个自变量x。它的归一化数值为(x-min/max-min)。

2.实现代码

from __future__ import division
def GetAverage(mat): n=len(mat)
m= width(mat)
num = [0]*m
for j in range(0,m):
for i in mat:
num[j]=num[j]+i[j]
num[j]=num[j]/n
return num def width(lst):
i=0
for j in lst[0]:
i=i+1
return i def GetVar(average,mat):
ListMat=[]
for i in mat:
ListMat.append(list(map(lambda x: x[0]-x[1], zip(average, i)))) n=len(ListMat)
m= width(ListMat)
num = [0]*m
for j in range(0,m):
for i in ListMat:
num[j]=num[j]+(i[j]*i[j])
num[j]=num[j]/n
return num def DenoisMat(mat):
average=GetAverage(mat)
variance=GetVar(average,mat)
section=list(map(lambda x: x[0]+x[1], zip(average, variance))) n=len(mat)
m= width(mat)
num = [0]*m
denoisMat=[]
for i in mat:
for j in range(0,m):
if i[j]>section[j]:
i[j]=section[j]
denoisMat.append(i)
return denoisMat def AutoNorm(mat):
n=len(mat)
m= width(mat)
MinNum=[9999999999]*m
MaxNum = [0]*m
for i in mat:
for j in range(0,m):
if i[j]>MaxNum[j]:
MaxNum[j]=i[j] for p in mat:
for q in range(0,m):
if p[q]<=MinNum[q]:
MinNum[q]=p[q] section=list(map(lambda x: x[0]-x[1], zip(MaxNum, MinNum)))
print section
NormMat=[] for k in mat: distance=list(map(lambda x: x[0]-x[1], zip(k, MinNum)))
value=list(map(lambda x: x[0]/x[1], zip(distance,section)))
NormMat.append(value)
return NormMat

库的实现:输入矩阵mat,

GetAverage(mat):返回均值

GetVar(average,mat):返回方差

DenoisMat(mat):去噪

AutoNorm(mat):归一化矩阵

下载地址:点击下载

/********************************

* 本文来自博客  “李博Garvin“

* 转载请标明出处:http://blog.csdn.net/buptgshengod

******************************************/

【机器学习算法-python实现】矩阵去噪以及归一化的更多相关文章

  1. 【机器学习算法-python实现】KNN-k近邻算法的实现(附源代码)

    ,400],[200,5],[100,77],[40,300]]) shape:显示(行,列)例:shape(group)=(4,2) zeros:列出一个同样格式的空矩阵,例:zeros(group ...

  2. 机器学习算法 Python&R 速查表

    sklearn实战-乳腺癌细胞数据挖掘( 博主亲自录制) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  3. 【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高.国际权威的学术组织,数据挖掘国际 ...

  4. 【机器学习算法-python实现】Adaboost的实现(1)-单层决策树(decision stump)

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      上一节学习支持向量机,感觉公式都太难理解了,弄得我有点头大.只是这一章的Adaboost线比 ...

  5. 【机器学习算法-python实现】採样算法的简单实现

    1.背景     採样算法是机器学习中比較经常使用,也比較easy实现的(出去分层採样).经常使用的採样算法有下面几种(来自百度知道):     一.单纯随机抽样(simple random samp ...

  6. 【机器学习算法-python实现】PCA 主成分分析、降维

    1.背景         PCA(Principal Component Analysis),PAC的作用主要是减少数据集的维度,然后挑选出基本的特征.         PCA的主要思想是移动坐标轴, ...

  7. 【机器学习算法-python实现】协同过滤(cf)的三种方法实现

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景       协同过滤(collaborative filtering)是推荐系统经常使用的一种方法.c ...

  8. 市场清仓价格算法 python求矩阵不同行不同列元素和的最大值

    问题描述 求矩阵不同行不同列元素和的最大值(最小值) 问题求解 1.通过scipy库求解 scipy.optimize库中的linear_sum_assignment方法可以求解 输入一个矩阵,参数m ...

  9. 【机器学习算法-python实现】svm支持向量机(1)—理论知识介绍

    (转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      强烈推荐阅读(http://www.cnblogs.com/jerrylead/archiv ...

随机推荐

  1. Ubuntu编译gdb-ARM调试环境

    参考Qt可用的gdb编译,以及交叉编译gdbserver,以及配置QtCreator远程调试 编译脚本 如下: #!/bin/bash echo -e "\033[32m 正在执行步骤一:检 ...

  2. bzoj 1143

    求最长反链裸题 补充一点知识.. 链                  :    D 中的一个子集 C   满足 C 是全序集  及C中所有元素都可以比较大小 反链              :   ...

  3. hadoop2.6.4集群的搭建

    hadoop集群搭建(亲自操作成功步骤!值得信赖!) 1.1集群简介 hadoop的核心组件: HDFS(分布式文件系统) YARN(运算资源调度系统) MapReduce(分布式运算编程框架) HA ...

  4. svn+apache

    参考文章:http://www.ttlsa.com/svn/apache-svn-configure/ http://blog.csdn.net/huangshaotian/article/detai ...

  5. Lighthouse前端性能优化测试工具

    在前端开发中,对于自己开发的app或者web page性能的好坏,一直是让前端开发很在意的话题.我们需要专业的网站测试工具,让我们知道自己的网页还有哪些需要更为优化的方面,我自己尝试了一款工具:Lig ...

  6. 两种思想实现基于jquery的延时导航菜单,可做延时触发器!

    1. 函数式 html如下: <div class="box"> <ul class="clear-fix"> <li class ...

  7. 8.4 正睿暑期集训营 Day1

    目录 2018.8.4 正睿暑期集训营 Day1 A 数对子 B 逆序对 C 盖房子 考试代码 A B C 2018.8.4 正睿暑期集训营 Day1 时间:4.5h(实际) 期望得分:30+50+3 ...

  8. 利用cve-2017-11882的一次渗透测试

    利用工具:https://github.com/Ridter/CVE-2017-11882/ 影响版本: office 2003 office 2007 office 2010 office 2013 ...

  9. 回忆Ajax ๑乛◡乛๑

    东西越多,记不完,也记不住,笔记是最好的记忆了. 回顾以前的ajax的写法,简单封装一个ajax. //data = { // url: "url", // method: &qu ...

  10. Mysql update case

    UPDATE table SET total = CASE WHEN total = '1' THEN total- 1 ELSE total = '2' END WHERE id = 17