URAL 1966 Cycling Roads 计算几何
Cycling Roads
题目连接:
http://acm.hust.edu.cn/vjudge/contest/123332#problem/F
Description
When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?
Input
The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
Output
Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.
Sample Input
4 2
0 0
1 0
1 1
0 1
1 3
4 2
Sample Output
YES
Hint
题意
平面给你n个点,以及m对直线,问你这m条直线是否能够使得所有点都在一个连通块内
题解:
用并查集去维护就好了,如果两条直线相交,就把直线端点的压进并查集就好了。
然后最后统计一下并查集的大小。
代码
#include<bits/stdc++.h>
using namespace std;
/* 常用的常量定义 */
const double INF = 1E200;
const double EP = 1E-10;
const int MAXV = 300;
const double PI = 3.14159265;
const int maxn = 300;
/* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
int a,b;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
double multiply(POINT sp,POINT ep,POINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
// 如果线段u和v相交(包括相交在端点处)时,返回true
//
//判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。
//判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。
bool intersect(LINESEG u,LINESEG v)
{
return( (max(u.s.x,u.e.x)>=min(v.s.x,v.e.x))&& //排斥实验
(max(v.s.x,v.e.x)>=min(u.s.x,u.e.x))&&
(max(u.s.y,u.e.y)>=min(v.s.y,v.e.y))&&
(max(v.s.y,v.e.y)>=min(u.s.y,u.e.y))&&
(multiply(v.s,u.e,u.s)*multiply(u.e,v.e,u.s)>=0)&& //跨立实验
(multiply(u.s,v.e,v.s)*multiply(v.e,u.e,v.s)>=0));
}
/******************************************************************************
判断点p是否在线段l上
条件:(p在线段l所在的直线上) && (点p在以线段l为对角线的矩形内)
*******************************************************************************/
bool online(LINESEG l,POINT p)
{
return( (multiply(l.e,p,l.s)==0) &&( ( (p.x-l.s.x)*(p.x-l.e.x)<=0 )&&( (p.y-l.s.y)*(p.y-l.e.y)<=0 ) ) );
}
int fa[maxn];
int fi(int u){
return u != fa[u] ? fa[u] = fi( fa[u] ) : u;
}
void uni(int u ,int v){
int p1 = fi( u ) , p2 = fi( v );
if( p1 != p2 ) fa[p1] = p2;
}
POINT p[maxn];
LINESEG L[maxn];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
fa[i]=i;
}
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
L[i].s=p[x],
L[i].e=p[y];
L[i].a=x;
L[i].b=y;
uni(x,y);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(online(L[j],p[i])){
uni(i,L[j].a);
uni(i,L[j].b);
}
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=m;j++){
if(intersect(L[i],L[j])){
uni(L[i].a,L[j].a);
uni(L[i].b,L[j].b);
uni(L[i].b,L[j].a);
uni(L[i].a,L[j].b);
}
}
}
int tmp = fi(1);
for(int i=1;i<=n;i++){
if(fi(i)!=tmp){
printf("NO\n");
return 0;
}
}
printf("YES\n");
return 0;
}
URAL 1966 Cycling Roads 计算几何的更多相关文章
- URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集
F - Cycling Roads Description When Vova was in Shenzhen, he rented a bike and spent most of the ...
- Ural 1966 Cycling Roads
================ Cycling Roads ================ Description When Vova was in Shenzhen, he rented a ...
- URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)
意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...
- Ural 2036. Intersect Until You're Sick of It 计算几何
2036. Intersect Until You're Sick of It 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2036 ...
- URAL 1775 B - Space Bowling 计算几何
B - Space BowlingTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...
- Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...
- URAL 2099 Space Invader题解 (计算几何)
啥也不说了,直接看图吧…… 代码如下: #include<stdio.h> #include<iostream> #include<math.h> using na ...
- URAL 1963 Kite 计算几何
Kite 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/C Description Vova bought a kite con ...
- 【计算几何】URAL - 2101 - Knight's Shield
Little Peter Ivanov likes to play knights. Or musketeers. Or samurai. It depends on his mood. For pa ...
随机推荐
- Spring Mvc + Maven + BlazeDS 与 Flex 通讯 (七)
BlazeDS 说明 BlazeDS是由Adobe开源的基于amf协议的,用于解决flex与java通讯的组件; 基于传统的文本协议的XML传输方式,在抽象层方面会有很大的压力,特别在需要序列化与反序 ...
- CRT/LCD/VGA Information and Timing【转】
转自:http://www.cnblogs.com/shangdawei/p/4760933.html 彩色阴极射线管的剖面图: 1. 电子QIANG Three Electron guns (for ...
- arm GIC介绍之四【转】
转自:https://blog.csdn.net/sunsissy/article/details/73882718 GIC是ARM体系中重要的组件,在认识到GIC的组成和功能之后,了解到IRQ的大致 ...
- C#使用redis学习笔记
1.官网:http://redis.io/(英) http://www.redis.cn/(中) 2.下载:https://github.com/dmajkic/redis/downloads(Wi ...
- JavaEE之JavaWeb简介
- javaweb笔记五
JSP:java server page服务器脚本语言.(脚本===插件),是一种在html代码中,嵌入java代码的方式.解决servlet产生动态页面缺陷而产生的一门技术.js:客户端脚本语言js ...
- flask你一定要知道的上下文管理机制
前引 在了解flask上下文管理机制之前,先来一波必知必会的知识点. 面向对象双下方法 首先,先来聊一聊面向对象中的一些特殊的双下划线方法,比如__call__.__getattr__系列.__get ...
- 002_JavaSE笔记:单例模式
一.应用杨景 在计算机系统中,线程池.缓存.日志对象.对话框.打印机.显卡的驱动程序对象常被设计成单例.这些应用都或多或少具有资源管理器的功能.每台计算机可以有若干个打印机,但只能有一个Printer ...
- Java编程的逻辑 (24) - 异常 (上)
本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...
- AxureRP8实战手册
基础操作篇 本篇包含56种常见的基础操作,初学者应在掌握本篇内容后再进行实战案例篇的学习,以免产生学习障碍.同时,建议具备一定基础的读者学习本篇中相对生疏的内容,并加以掌握. 第1章 使用元件 本文目 ...