URAL 1966 Cycling Roads 计算几何
Cycling Roads
题目连接:
http://acm.hust.edu.cn/vjudge/contest/123332#problem/F
Description
When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?
Input
The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
Output
Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.
Sample Input
4 2
0 0
1 0
1 1
0 1
1 3
4 2
Sample Output
YES
Hint
题意
平面给你n个点,以及m对直线,问你这m条直线是否能够使得所有点都在一个连通块内
题解:
用并查集去维护就好了,如果两条直线相交,就把直线端点的压进并查集就好了。
然后最后统计一下并查集的大小。
代码
#include<bits/stdc++.h>
using namespace std;
/* 常用的常量定义 */
const double INF = 1E200;
const double EP = 1E-10;
const int MAXV = 300;
const double PI = 3.14159265;
const int maxn = 300;
/* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
int a,b;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
double multiply(POINT sp,POINT ep,POINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
// 如果线段u和v相交(包括相交在端点处)时,返回true
//
//判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。
//判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。
bool intersect(LINESEG u,LINESEG v)
{
return( (max(u.s.x,u.e.x)>=min(v.s.x,v.e.x))&& //排斥实验
(max(v.s.x,v.e.x)>=min(u.s.x,u.e.x))&&
(max(u.s.y,u.e.y)>=min(v.s.y,v.e.y))&&
(max(v.s.y,v.e.y)>=min(u.s.y,u.e.y))&&
(multiply(v.s,u.e,u.s)*multiply(u.e,v.e,u.s)>=0)&& //跨立实验
(multiply(u.s,v.e,v.s)*multiply(v.e,u.e,v.s)>=0));
}
/******************************************************************************
判断点p是否在线段l上
条件:(p在线段l所在的直线上) && (点p在以线段l为对角线的矩形内)
*******************************************************************************/
bool online(LINESEG l,POINT p)
{
return( (multiply(l.e,p,l.s)==0) &&( ( (p.x-l.s.x)*(p.x-l.e.x)<=0 )&&( (p.y-l.s.y)*(p.y-l.e.y)<=0 ) ) );
}
int fa[maxn];
int fi(int u){
return u != fa[u] ? fa[u] = fi( fa[u] ) : u;
}
void uni(int u ,int v){
int p1 = fi( u ) , p2 = fi( v );
if( p1 != p2 ) fa[p1] = p2;
}
POINT p[maxn];
LINESEG L[maxn];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
fa[i]=i;
}
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
L[i].s=p[x],
L[i].e=p[y];
L[i].a=x;
L[i].b=y;
uni(x,y);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(online(L[j],p[i])){
uni(i,L[j].a);
uni(i,L[j].b);
}
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=m;j++){
if(intersect(L[i],L[j])){
uni(L[i].a,L[j].a);
uni(L[i].b,L[j].b);
uni(L[i].b,L[j].a);
uni(L[i].a,L[j].b);
}
}
}
int tmp = fi(1);
for(int i=1;i<=n;i++){
if(fi(i)!=tmp){
printf("NO\n");
return 0;
}
}
printf("YES\n");
return 0;
}
URAL 1966 Cycling Roads 计算几何的更多相关文章
- URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集
F - Cycling Roads Description When Vova was in Shenzhen, he rented a bike and spent most of the ...
- Ural 1966 Cycling Roads
================ Cycling Roads ================ Description When Vova was in Shenzhen, he rented a ...
- URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)
意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...
- Ural 2036. Intersect Until You're Sick of It 计算几何
2036. Intersect Until You're Sick of It 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2036 ...
- URAL 1775 B - Space Bowling 计算几何
B - Space BowlingTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...
- Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...
- URAL 2099 Space Invader题解 (计算几何)
啥也不说了,直接看图吧…… 代码如下: #include<stdio.h> #include<iostream> #include<math.h> using na ...
- URAL 1963 Kite 计算几何
Kite 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/C Description Vova bought a kite con ...
- 【计算几何】URAL - 2101 - Knight's Shield
Little Peter Ivanov likes to play knights. Or musketeers. Or samurai. It depends on his mood. For pa ...
随机推荐
- 均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation)
均方根值(RMS)+ 均方根误差(RMSE)+标准差(Standard Deviation) 1.均方根值(RMS)也称作为效值,它的计算方法是先平方.再平均.然后开方. 2.均方根误差,它是观测值 ...
- 如何用javascript获取和设置css3属性
==================获取======================== 我想到的第一个思路 var test = document.getElementById('test'); c ...
- vue双向绑定原理分析
当我们学习angular或者vue的时候,其双向绑定为我们开发带来了诸多便捷,今天我们就来分析一下vue双向绑定的原理. 简易vue源码地址:https://github.com/jiangzhenf ...
- Caffe 碎碎念
Window Data Layer window data layer 的数据是存在硬盘上的图片, 需要在一个txt里指定用于训练或测试的图片以及bounding box, bounding box ...
- 关于webpack下热更新?&自动刷新?的小记(非vue-cli)
写本随笔时:webpack4.6.0 为何标题用?号,因为老衲也不知是否用词正确,大概是这样的说法: webpack4.0引入生产模式和开发模式,在开发时使用 webpack 打包后不压缩,所以只需要 ...
- __new__[转载]
转载自https://www.cnblogs.com/MnCu8261/p/6365665.html 实际上,实例化类时调用的第一个方法并不是__init__,而是__new__,其作用正是创建并返回 ...
- jmeter的环境配置
工具/原料 WIN7 Jmeter安装包 JDK 一.安装JDK 1 [步骤一]安装jdk 1.下载jdk,到官网下载jdk,地址:http://www.oracle.com/technetw ...
- linux中serial driver理解【转】
转自:http://blog.csdn.net/laoliu_lcl/article/details/39967225 英文文档地址:myandroid/kernel_imx/Documentatio ...
- poj1033
模拟题,注意不需要移动的情况要特殊输出 #include <cstdio> #include <cstring> #include <cstdlib> using ...
- python日常
1.远程访问远程访问Jupyter Notebook,本地浏览器不能打开,先查了防火墙的状态,然后将设置的端口进行allow,网址,仍然拒绝链接,而后通过远程访问Jupyter Notebook,然后 ...