URAL 1966 Cycling Roads 计算几何
Cycling Roads
题目连接:
http://acm.hust.edu.cn/vjudge/contest/123332#problem/F
Description
When Vova was in Shenzhen, he rented a bike and spent most of the time cycling around the city. Vova was approaching one of the city parks when he noticed the park plan hanging opposite the central entrance. The plan had several marble statues marked on it. One of such statues stood right there, by the park entrance. Vova wanted to ride in the park on the bike and take photos of all statues. The park territory has multiple bidirectional cycling roads. Each cycling road starts and ends at a marble statue and can be represented as a segment on the plane. If two cycling roads share a common point, then Vova can turn on this point from one road to the other. If the statue stands right on the road, it doesn't interfere with the traffic in any way and can be photoed from the road.
Can Vova get to all statues in the park riding his bike along cycling roads only?
Input
The first line contains integers n and m that are the number of statues and cycling roads in the park (1 ≤ m < n ≤ 200) . Then n lines follow, each of them contains the coordinates of one statue on the park plan. The coordinates are integers, their absolute values don't exceed 30 000. Any two statues have distinct coordinates. Each of the following m lines contains two distinct integers from 1 to n that are the numbers of the statues that have a cycling road between them.
Output
Print “YES” if Vova can get from the park entrance to all the park statues, moving along cycling roads only, and “NO” otherwise.
Sample Input
4 2
0 0
1 0
1 1
0 1
1 3
4 2
Sample Output
YES
Hint
题意
平面给你n个点,以及m对直线,问你这m条直线是否能够使得所有点都在一个连通块内
题解:
用并查集去维护就好了,如果两条直线相交,就把直线端点的压进并查集就好了。
然后最后统计一下并查集的大小。
代码
#include<bits/stdc++.h>
using namespace std;
/* 常用的常量定义 */
const double INF = 1E200;
const double EP = 1E-10;
const int MAXV = 300;
const double PI = 3.14159265;
const int maxn = 300;
/* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
int a,b;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
double multiply(POINT sp,POINT ep,POINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
// 如果线段u和v相交(包括相交在端点处)时,返回true
//
//判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。
//判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。
bool intersect(LINESEG u,LINESEG v)
{
return( (max(u.s.x,u.e.x)>=min(v.s.x,v.e.x))&& //排斥实验
(max(v.s.x,v.e.x)>=min(u.s.x,u.e.x))&&
(max(u.s.y,u.e.y)>=min(v.s.y,v.e.y))&&
(max(v.s.y,v.e.y)>=min(u.s.y,u.e.y))&&
(multiply(v.s,u.e,u.s)*multiply(u.e,v.e,u.s)>=0)&& //跨立实验
(multiply(u.s,v.e,v.s)*multiply(v.e,u.e,v.s)>=0));
}
/******************************************************************************
判断点p是否在线段l上
条件:(p在线段l所在的直线上) && (点p在以线段l为对角线的矩形内)
*******************************************************************************/
bool online(LINESEG l,POINT p)
{
return( (multiply(l.e,p,l.s)==0) &&( ( (p.x-l.s.x)*(p.x-l.e.x)<=0 )&&( (p.y-l.s.y)*(p.y-l.e.y)<=0 ) ) );
}
int fa[maxn];
int fi(int u){
return u != fa[u] ? fa[u] = fi( fa[u] ) : u;
}
void uni(int u ,int v){
int p1 = fi( u ) , p2 = fi( v );
if( p1 != p2 ) fa[p1] = p2;
}
POINT p[maxn];
LINESEG L[maxn];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lf%lf",&p[i].x,&p[i].y);
fa[i]=i;
}
for(int i=1;i<=m;i++){
int x,y;
scanf("%d%d",&x,&y);
L[i].s=p[x],
L[i].e=p[y];
L[i].a=x;
L[i].b=y;
uni(x,y);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(online(L[j],p[i])){
uni(i,L[j].a);
uni(i,L[j].b);
}
}
}
for(int i=1;i<=m;i++){
for(int j=1;j<=m;j++){
if(intersect(L[i],L[j])){
uni(L[i].a,L[j].a);
uni(L[i].b,L[j].b);
uni(L[i].b,L[j].a);
uni(L[i].a,L[j].b);
}
}
}
int tmp = fi(1);
for(int i=1;i<=n;i++){
if(fi(i)!=tmp){
printf("NO\n");
return 0;
}
}
printf("YES\n");
return 0;
}
URAL 1966 Cycling Roads 计算几何的更多相关文章
- URAL 1966 Cycling Roads 点在线段上、线段是否相交、并查集
F - Cycling Roads Description When Vova was in Shenzhen, he rented a bike and spent most of the ...
- Ural 1966 Cycling Roads
================ Cycling Roads ================ Description When Vova was in Shenzhen, he rented a ...
- URAL - 1966 - Cycling Roads(并检查集合 + 判刑线相交)
意甲冠军:n 积分,m 边缘(1 ≤ m < n ≤ 200),问:是否所有的点连接(两个边相交.该 4 点连接). 主题链接:http://acm.timus.ru/problem.aspx? ...
- Ural 2036. Intersect Until You're Sick of It 计算几何
2036. Intersect Until You're Sick of It 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=2036 ...
- URAL 1775 B - Space Bowling 计算几何
B - Space BowlingTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/ ...
- Ural 1046 Geometrical Dreams(解方程+计算几何)
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1046 参考博客:http://hi.baidu.com/cloudygoose/item ...
- URAL 2099 Space Invader题解 (计算几何)
啥也不说了,直接看图吧…… 代码如下: #include<stdio.h> #include<iostream> #include<math.h> using na ...
- URAL 1963 Kite 计算几何
Kite 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/C Description Vova bought a kite con ...
- 【计算几何】URAL - 2101 - Knight's Shield
Little Peter Ivanov likes to play knights. Or musketeers. Or samurai. It depends on his mood. For pa ...
随机推荐
- HTML的文档类型:<!DOCTYPE >
<!DOCTYPE> 声明:它不是 HTML 标签而且对大小写不敏感,而是指示 web 浏览器关于页面使用哪个 HTML 版本进行编写的指令.而且 声明必须是 HTML 文档的第一行,位于 ...
- 【转】CocoaLumberjack——带颜色的Log
CHENYILONG Blog [转]CocoaLumberjack--带颜色的Log - 趣味苹果开发 - 博客园 转自:趣味苹果开发 CocoaLumberjack--带颜色的Log Coco ...
- Spark笔记之累加器(Accumulator)
一.累加器简介 在Spark中如果想在Task计算的时候统计某些事件的数量,使用filter/reduce也可以,但是使用累加器是一种更方便的方式,累加器一个比较经典的应用场景是用来在Spark St ...
- lucene简介——(一)
0.概念性东西 1.数据分类
- Centos6.5下rsync+inotify的配置详解
Centos 6.5配置rsync+inotify实现文件实时同步 1.安装rsync(两台机器执行相同的步骤) yum install gcc yum install rsyncd xinetd - ...
- urb传输的代码分析【转】
转自:http://blog.csdn.net/zkami/article/details/2503829 urb传输的代码分析 如需引用,请注明出处blog.csdn.net/zkami 作者Zhe ...
- 细说MySQL备份的基本原理(系列一 ) 备份与锁
数据库作为一个系统中唯一或者主要的持久化组件,对服务的可用性和数据的可靠性要求极高. 作为能够有效应对因为系统软硬件故障.人工误操作导致数据丢失的预防手段,备份是目前最为常见的数据库运维操作. 考虑到 ...
- Statement执行静态SQL语句
package com.isoftstone.jdbc; import java.sql.Connection; import java.sql.DriverManager; import java. ...
- .NetCore下使用Polly结合IHttpClientFactory实现聚合服务
在使用微服务的过程中经常会遇到这样的情况,就目前我遇到的问题做下分析 情况一: 这里服务对于前后端分离情况来说,多使用查询服务,前端直接获取不同服务的数据展示,如果出现其中的服务失败,对业务数据无影响 ...
- .NetCore 中如何实现分页以及编写一个URL分页
首先看下效果 这个分页控件不是很完美,体现下思路就行了,有兴趣的可以自己完善,我把代码贴出来,在这边文章中已有一些介绍 代码 public class UosoPagerTagHelper : Tag ...