【BZOJ1019】[SHOI2008]汉诺塔(数论,搜索)

题面

BZOJ

洛谷

题解

首先汉诺塔问题的递推式我们大力猜想一下一定会是形如\(f_i=kf_{i-1}+b\)的形式。

这个鬼玩意不好算,我们就拿着\(f_1,f_2,f_3\)之间的关系算一下,爆搜一下很容易解出直线方程。

#include<iostream>
#include<cstdio>
using namespace std;
int n,m,k,b;char ch[2];
int E[6][2];long long f[50];
int S[3][50],top[3];
int calc(int x)
{
top[0]=top[1]=top[2]=0;int ret=0,lp=0;
for(int i=x;i;--i)S[0][++top[0]]=i;
while(++ret)
{
for(int i=0;i<6;++i)
{
int u=E[i][0],v=E[i][1];
if(!top[u])continue;
if(S[u][top[u]]==lp)continue;
if(top[v]&&S[u][top[u]]>S[v][top[v]])continue;
S[v][++top[v]]=lp=S[u][top[u]--];break;
}
if(top[0]==x||top[1]==x||top[2]==x)return ret;
}
}
int main()
{
scanf("%d",&n);
for(int i=0;i<6;++i)
{
scanf("%s",ch);
E[i][0]=ch[0]-'A';
E[i][1]=ch[1]-'A';
}
f[1]=calc(1);f[2]=calc(2);f[3]=calc(3);
k=(f[3]-f[2])/(f[2]-f[1]);b=f[2]-k;
for(int i=4;i<=n;++i)f[i]=f[i-1]*k+b;
cout<<f[n]<<endl;return 0;
}

【BZOJ1019】[SHOI2008]汉诺塔(数论,搜索)的更多相关文章

  1. bzoj1019 [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1030  Solved: 638[Submit][Status] ...

  2. bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...

  3. bzoj1019: [SHOI2008]汉诺塔(动态规划)

    1019: [SHOI2008]汉诺塔 题目:传送门 简要题意: 和经典的汉诺塔问题区别不大,但是题目规定了一个移动时的优先级: 如果当前要从A柱子移动,但是A到C的优先级比A到B的优先级大的话,那就 ...

  4. [bzoj1019][SHOI2008]汉诺塔 (动态规划)

    Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操 ...

  5. bzoj1019 / P4285 [SHOI2008]汉诺塔

    P4285 [SHOI2008]汉诺塔 递推 题目给出了优先级,那么走法是唯一的. 我们用$0,1,2$代表$A,B,C$三个柱子 设$g[i][x]$为第$x$根柱子上的$i$个盘子,经过演变后最终 ...

  6. 【bzoj1019】[SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1427  Solved: 872[Submit][Status] ...

  7. BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔

    汉诺塔(BZOJ) P4285 [SHOI2008]汉诺塔 居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分) 冥思苦想了1h+ \(\to\) ?! 就是普通的hanoi NOI or HNO ...

  8. 1019: [SHOI2008]汉诺塔

    1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status] ...

  9. 【bzoj1019】汉诺塔

    [bzoj1019]汉诺塔 题意 传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1019 分析 思路1:待定系数+解方程 设\(f[n]\)为 ...

随机推荐

  1. Table Generator 表格样式生成代码

    <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{font ...

  2. 【css】gradient匹配ps渐变叠加效果

    CSS3 Gradient分为linear-gradient(线性渐变)和radial-gradient(径向渐变). 一.linear-gradient(线性渐变) eg:background: l ...

  3. python基础学习1-变量定义赋值,屏幕输入输出

    一.变量定义赋值 输入输出屏幕显示 : name = input("input is your name") age =int( input("input is your ...

  4. Centos7下不删除python2.x的情况下安装python3.x

    Linux下默认系统自带python2.X的版本,这个版本被系统很多程序所依赖,所以不建议删除,如果使用最新的Python3那么我们知道编译安装源码包和系统默认包之间是没有任何影响的,所以可以安装py ...

  5. Nuxt.js + koa2 入门

    1. nuxt项目初始化 下面是使用 koa 模板方法初始化一个项目,使用该方法需要将 nuxt 的版本降至1.4.2: 官方 https://zh.nuxtjs.org/guide/installa ...

  6. [CF983D]Arkady and Rectangles[线段树+可删堆/set]

    题意 你有一个无限大的绘图板,开始颜色是\(0\) , 你将进行\(n\) 次绘图,第\(i\) 次绘图会将左下角为 \((x_1, y_1)\),右上角为\((x_2, y_2)\) 的矩形涂成颜色 ...

  7. java拦截器(Interceptor)学习笔记

    1,拦截器的概念    java里的拦截器是动态拦截Action调用的对象,它提供了一种机制可以使开发者在一个Action执行的前后执行一段代码,也可以在一个Action执行前阻止其执行,同时也提供了 ...

  8. Zabbix使用总结

    1. CentOS 7上启动zabbix-server失败,/var/log/messages中的报错信息如下: Feb :: mysql-server1 systemd: Starting Zabb ...

  9. 【分享】熟练的Java程序员应该掌握哪些技术?

    Java程序员应该掌握哪些能力才能算是脱离菜鸟达到熟练的程度? 1.语法:Java程序员必须比较熟悉语法,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息 知道是什么样的语法错误并且知道任 ...

  10. centos 7部署ELK

    一.ELK介绍 Elasticsearch 是基于 JSON 的分布式搜索和分析引擎,专为实现水平扩展.高可用和管理便捷性而设计.Logstash 是动态数据收集管道,拥有可扩展的插件生态系统,能够与 ...