【BZOJ1485】[HNOI2009]有趣的数列(组合数学)
【BZOJ1485】[HNOI2009]有趣的数列(组合数学)
题面
题解
从小往大填数,要么填在最小的奇数位置,要么填在最小的偶数位置。
偶数位置填的数的个数不能超过奇数位置填的数的个数。
好的,卡特兰数。
诶,woc,我不会卡特兰数啊。行,来学一下。
\(H(0)=H(1)=1\)
\(H(n)=\sum_{i=0}^{n-1} H(i)H(n-i-1)\)
\(H(n)=H(n-1)*\frac{4n-2}{n+1}\)
\(H(n)=\frac{C_{2n}^n}{n+1}=C_{2n}^n-C_{2n}^{n+1}\)
前几项是\(1,1,2,5,14,42,132......\)
我\(NOI\)的时候就因为不会卡特兰数少得了\(12\)分,菜死。
那么这题直接算分子分母两个部分的质因子,然后手动除一下再乘,这样与逆元无关了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 2000100
int n,P,ans=1;
int pri[MAX],a[MAX],tot;
bool zs[MAX];
void pre(int n)
{
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
}
}
}
void Divide(int x,int w)
{
for(int i=1;i<=tot&&pri[i]*pri[i]<=x;++i)
while(x%pri[i]==0)x/=pri[i],a[pri[i]]+=w;
if(x>1)a[x]+=w;
}
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%P;a=1ll*a*a%P;b>>=1;}
return s;
}
int main()
{
scanf("%d%d",&n,&P);pre(n+n);Divide(n+1,-1);
for(int i=n+n;i>n;--i)Divide(i,1);
for(int i=n;i;--i)Divide(i,-1);
for(int i=1;i<=n+n;++i)ans=1ll*ans*fpow(i,a[i])%P;
printf("%d\n",ans);
return 0;
}
【BZOJ1485】[HNOI2009]有趣的数列(组合数学)的更多相关文章
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
1485: [HNOI2009]有趣的数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2105 Solved: 1117[Submit][Stat ...
- [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数
有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...
- BZOJ1485: [HNOI2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- 【卡特兰数】BZOJ1485: [HNOI2009]有趣的数列
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485:[HNOI2009]有趣的数列(卡特兰数)
Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…&l ...
- BZOJ1485: [HNOI2009]有趣的数列(Catalan数,质因数分解求组合数)
题意 挺简洁的. 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1<a3<…<a ...
- bzoj1485: [HNOI2009]有趣的数列(Catalan数)
一眼卡特兰数...写完才发现不对劲,样例怎么输出$0$...原来模数不一定是质数= =... 第一次见到模数不是质数的求组合数方法$(n,m\leq 10^7)$,记录一下... 先对于$1$~$n$ ...
- [luogu1485 HNOI2009] 有趣的数列 (组合数学 卡特兰数)
传送门 Solution 卡特兰数 排队问题的简单变化 答案为\(C_{2n}^n \pmod p\) 由于没有逆元,只好用分解质因数,易证可以整除 Code //By Menteur_Hxy #in ...
- BZOJ1485: [HNOI2009]有趣的数列(卡特兰数+快速幂)
题目链接 传送门 题面 思路 打表可以发现前六项分别为1,2,5,12,42,132,加上\(n=0\)时的1构成了卡特兰数的前几项. 看别人的题解说把每一个数扫一遍,奇数项当成入栈,偶数项当成出栈, ...
随机推荐
- Android导入AS工程
AS 导入工程 还得 新建工程贴代码
- odoo 打印单
<td style="word-wrap:break-word;width:20%;font-size:16"> <t t-foreach="l.pro ...
- .NET Core中向已存在文件的特定位置写入数据
本例使用.NET Core向一个文本文件中的特定位置写入数据,来模拟文件上传中的断点续传是如何在服务器端实现的. 新建一个.NET Core控制台项目FileContinueToWrite,其Prog ...
- 20155209 林虹宇 Exp3 免杀原理与实践
Exp3 免杀原理与实践 使用msf生成后门程序的检测 将上周msf生成的后门文件放在virscan.org中进行扫描 结果很危险 使用msf编码一次进行扫描 使用msf编码10次进行扫描 结果同样很 ...
- 20155229《网络对抗技术》Exp2:后门原理与实践
实验预习 后门: 指绕过安全控制而获取对程序或系统访问权的方法.最主要目的就是方便以后再次秘密进入或者控制系统. 木马与后门的区别: 木马:通过欺骗用户的方法(包含捆绑,利用网页等)让用户不知不觉的安 ...
- Ueditor使用笔记
富文本编辑器在javaweb项目中还是比较常见的,如:ckeditor.kindeditor.ueditor等.今天主要叙述的对象为ueditor,它属于百度的.闲话不多说,下面开始介 ...
- ElasticSearch入门 第八篇:存储
这是ElasticSearch 2.4 版本系列的第八篇: ElasticSearch入门 第一篇:Windows下安装ElasticSearch ElasticSearch入门 第二篇:集群配置 E ...
- post请求参数Json字符串包含数组的校验和处理
传入参数类型 {"aaa":"aaaa","bbb":"bbb","ccc":"ccc&q ...
- 转 Git 常用命令大全
一. Git 常用命令速查 git branch 查看本地所有分支 git status 查看当前状态 git commit 提交 git branch -a 查看所有的分支 git branch ...
- UE4添加植被Foliage Type
在UE4中的地形渲染上不可避免的需要添加植被,而如果采取手动添加StaticMesh植被的方式则会浪费大量的时间精力. UE4提供了一种批量添加地面植被类型的方式Foliage Type.在编辑器内容 ...