传送门

高斯消元模板题。

写的时候反了sbsbsb错误消元的时候除数和被除数反了。

所以把板子贴上来压压惊。

代码:

#include<bits/stdc++.h>
using namespace std;
inline int read(){
	int ans=0,w=1;
	char ch=getchar();
	while(!isdigit(ch)){if(ch=='-')w=-1;ch=getchar();}
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans*w;
}
const int N=105;
int n;
double a[N][N],ans[N];
int main(){
	n=read();
	for(int i=1;i<=n;++i)for(int j=1;j<=n+1;++j)a[i][j]=read();
	for(int i=1;i<=n;++i){
		int tmp=i;
		for(int j=i+1;j<=n;++j)if(fabs(a[j][i])>fabs(a[tmp][i]))tmp=j;
		if(tmp^i)swap(a[tmp],a[i]);
		for(int j=i+1;j<=n;++j){
			double tmp=a[j][i]/a[i][i];
			for(int k=1;k<=n+1;++k)a[j][k]-=a[i][k]*tmp;
		}
	}
	for(int i=n;i;--i){
		ans[i]=a[i][n+1]/a[i][i];
		for(int j=i-1;j;--j)a[j][n+1]-=a[j][i]*ans[i];
	}
	for(int i=1;i<=n;++i)printf("%d ",(int)(ans[i]+0.5));
	return 0;
}

2018.10.31 vijos1052贾老二算算术(高斯消元)的更多相关文章

  1. VIJOS 1052贾老二算算术 (高斯消元)

    描述 贾老二是个品学兼优的好学生,但由于智商问题,算术学得不是很好,尤其是在解方程这个方面.虽然他解决 2x=2 这样的方程游刃有余,但是对于 {x+y=3 x-y=1} 这样的方程组就束手无策了.于 ...

  2. 【LOJ2542】【PKUWC 2018】随机游走 min-max容斥 树上高斯消元

    题目描述 有一棵 \(n\) 个点的树.你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(q\) 次询问,每次询问给定一个集合 \(S\),求如果从 \(x\) 出发一 ...

  3. Luogu1092 NOIP2004虫食算(搜索+高斯消元)

    暴力枚举每一位是否进位,然后就可以高斯消元解出方程了.然而复杂度是O(2nn3),相当不靠谱. 考虑优化.注意到某一位进位情况的变化只会影响到方程的常数项,于是可以在最开始做一次高斯消元算出每个未知数 ...

  4. 2018.10.31 NOIP模拟 几串字符(数位dp+组合数学)

    传送门 如果观察到性质其实也不是很难想. 然而考试的时候慌得一批只有心思写暴力233. 下面是几个很有用的性质: c0,1+1≥c1,0≥c0,1c_{0,1 }+1 ≥ c_{1,0} ≥ c_{0 ...

  5. [文章汇总]ASP.NET Core框架揭秘[最近更新:2018/10/31]

    之前一段时间都在个人公众号账号“大内老A”发布关于ASP.NET Core的系列文章,很多人留言希望能够同步到这里,所以在这里 对这些文章做一个汇总,以便于PC端阅读.如果说微软官方文档主要关于ASP ...

  6. it's time to change myself now (2018.10.31)

    自16年从新屋熊职校毕业,入职深圳某厂从事云存储两年半了.两年半的时间很快,快的感觉一生都会飞快,两年多一直很忙,忙的几乎忘了自己是否正向改变过. 正向改变,or 积极改变,今年十一回家,与几个好友小 ...

  7. Unity进阶----AssetBundle_02(加载依赖关系及网络资源)(2018/10/31)

    网络资源加载: string path ="file://"+ Application.streamingAssetsPath + "\\windows\\123&quo ...

  8. 2018.10.31 NOIP训练 锻造(方程式期望入门题)(期望dp)

    传送门 根据题目列出方程: fi=pi∗(fi−1+fi−2)+(1−pi)∗(fi+1+fi)f_i=p_i*(f_{i-1}+f_{i-2})+(1-p_i)*(f_{i+1}+f_i)fi​=p ...

  9. 2018.10.31 bzoj4737: 组合数问题(lucas定理+容斥原理+数位dp)

    传送门 这是一道让我重新认识lucaslucaslucas的题. 考虑到lucaslucaslucas定理: (nm)≡(n%pm%p)∗(npmp)\binom n m \equiv \binom ...

随机推荐

  1. ATX 安卓设备 WiFi 统一管理以及设备自动化测试

    众所周知,安卓单台设备的UI自动化测试已经比较完善了,有数不清的自动化框架或者工具.但是介绍多设备管理的内容并不多,当手里的手机多了之后,要做自动化测试平台,这块的东西又不得不碰,摆脱USB限制,接入 ...

  2. TOJ3448: 小学生的作业

    Python字符串的插入操作 传送门:http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=3448 ...

  3. FortiGate基本信息

    1.介绍 FortiGate是全新的下一代防火墙,在整个硬件架构和系统上面都有新的设计,在性能和功能上面都有了很大提升,具有性能高.接口丰富.功能齐全.安全路由交换一体化.性价比高等优势. Forti ...

  4. form表单验证字段学习总结

    字段的属性梳理 最重要的字段 required inital widget error_messages ----------------------------------------------- ...

  5. web中CookieUtils的工具类

    该类中包含Web开发中对Cookie的常用操作,如需要Copy带走 package com.project.utils; import java.io.UnsupportedEncodingExcep ...

  6. asp相关知识整理

    WWW----World Wide Web(万维网) URL----Uniform Resource Locator(统一资源定位符) HTTP----Hyper Text Transfer Prot ...

  7. [Mysql]——通过例子理解事务的4种隔离级别(转)

    第1级别:Read Uncommitted(读取未提交内容) 第2级别:Read Committed(读取提交内容) 第3级别:Repeatable Read(可重读) 第4级别:Serializab ...

  8. C#中静态构造函数

    静态构造函数用于初始化任何静态数据,或执行仅需执行一次的特定操作. 将在创建第一个实例或引用任何静态成员之前自动调用静态构造函数. 静态构造函数的属性 1. 静态构造函数不使用访问修饰符或不具有参数. ...

  9. Android 工程目录

    app java:我们写Java代码的地方,业务功能都在这里实现 res:存放我们各种资源文件的地方,有图片,字符串,动画,音频等,还有各种形式的XML文件 Gradle Scripts 1.res资 ...

  10. Git 安装和使用教程(更加详细)

    转载至:https://www.cnblogs.com/smuxiaolei/p/7484678.html#undefined Git 安装和使用教程 git 提交 全部文件 git add .  g ...