题意:子序列的定义:对于一个序列a=a[1],a[2],......a[n]。则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n。

例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。

对于给出序列a,请输出不同的子序列的个数。(由于答案比较大,请将答案mod 1000000007)

思路:设前i个数字的子序列数为f(i)。

1.如果第i个数字在前i个数字里都没有出现过,那么,原来i-1个数字里面的子序列也是前i个数字的子序列,总共是f(i-1),而在原来i-1个数字的子序列每个的背后加一个a[i]也是新的子序列,总共是f(i-1)个,然后最后一个数字单独也可以组成一个新的子序列,是1个,因此这时f(i)=f(i)+f(i)+1。

2.如果第i歌数字在前面i个数字里面出现过,那么f(i)=f(i)+f(i)-f(a[i]最后一次出现的位置-1)。因为这时候,单独一个a[i]的情况已经被计算过,于是没有了+1,而往a[i]最后一次出现的位置-1加上一个a[i]的情况也已经被计算过,一次要减掉。

注意:遇到减号的时候取模时要加MOD再取模。

#include<cstdio>
#include<cstring>
#define MOD 1000000007
#define MAXN 1000005
typedef long long LL;
LL f[MAXN];
int last[MAXN],a,n;
int main()
{
while(~scanf("%d",&n))
{
memset(last,0,sizeof(last));
f[0]=0;
for(int i=1;i<=n;++i)
{
scanf("%d",&a);
f[i]=(f[i-1]<<1)%MOD;
if(!last[a]) last[a]=i,f[i]++;
else f[i]=(f[i]-f[last[a]-1]+MOD)%MOD,last[a]=i;
}
printf("%I64d\n",f[n]%MOD);
}
return 0;
}

FZU 2129 子序列个数 (动态规划)的更多相关文章

  1. FZU 2129 子序列个数 (递推dp)

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=2129 dp[i]表示前i个数的子序列个数 当a[i]在i以前出现过,dp[i] = dp[i - 1]*2 - ...

  2. FZU 2129 子序列个数

     Problem Description 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1& ...

  3. FZU 2129 子序列个数(DP)题解

    题意:求子序列种数 思路:dp[i]代表到i的所有种数,把当前i放到末尾,那么转移方程dp[i] = dp[i - 1] + dp[i -1],但是可能存在重复,比如1 2 3 2,在第2位置的时候出 ...

  4. fzuoj Problem 2129 子序列个数

    http://acm.fzu.edu.cn/problem.php?pid=2129 Problem 2129 子序列个数 Accept: 162    Submit: 491Time Limit: ...

  5. FZU Problem 2129 子序列个数

    看了 dp 方程之后应该是妙懂 每次 加入一个数,×2  然后剪掉重复的: 重复的个数 维前面那个数,,,,, #include<iostream> #include<stdio.h ...

  6. 子序列个数(fzu2129)

    子序列个数 Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status ...

  7. 【LOJ#6074】子序列(动态规划)

    [LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...

  8. 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)

    2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...

  9. 51nod1202 子序列个数

    看到a[i]<=100000觉得应该从这个方面搞.如果a[x]没出现过,f[x]=f[x-1]*2;否则f[x]=f[x-1]*2-f[pos[a[x]]-1];ans=f[n]-1,然后WA了 ...

随机推荐

  1. 向OC类中添加默认的协议实现(ProtocolKit)

    以forkingdog的PorotocolKit举例 举例 ProtocolKit Protocol extension for Objective-C Usage Your protocol: @p ...

  2. 关于js小数计算的问题

    在js浮点运算中 var a=0.2-0.1; var b=0.3-0.2; console.log(a==b); 答案是什么呢,很多人可能认为是true,包括我在内,但是当我写出来运行了一下,我被答 ...

  3. UITextView -- 基础备忘

    UITextView 这篇文章只涉及到基本的使用,日后会写一些关于结合TextKit的备忘 基本属性 let screenSize = UIScreen.mainScreen().bounds.siz ...

  4. 2D image convolution

    在学习cnn的过程中,对convolution的概念真的很是模糊,本来在学习图像处理的过程中,已对convolution有所了解,它与correlation是有不同的,因为convolution = ...

  5. Spring 3整合Quartz 2实现定时任务一:常规整合 (基于maven构建)

    最近工作中需要用到定时任务的功能,虽然Spring3也自带了一个轻量级的定时任务实现,但感觉不够灵活,功能也不够强大.在考虑之后,决定整合更为专业的Quartz来实现定时任务功能. 首先,当然是添加依 ...

  6. Hibernate Session 获取connection

    Hibernate Session 获取connection 由于最近一个项目要用到一条辅助的SQL ,hibernate里面的SQLQuery API 总的SQL语句不能包含 : 冒号, 固放弃Hi ...

  7. Android 系统功能设置菜单 LinearLayout与relativeLayout的实现

    <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android=&quo ...

  8. C++控制台程序中使用定时器

    转自博客:http://www.cnblogs.com/phinecos/archive/2008/03/08/1096691.html 作者:洞庭散人 “我现在项目是一个控制台程序,用到的Win32 ...

  9. usb.ids

    # # List of USB ID's # # Maintained by Vojtech Pavlik <vojtech@suse.cz> # If you have any new ...

  10. kernel 校验和实现

    kernel 校验和实现 Kernel checksum implementation ) TCP包的错误检测使用16位累加和校验. 除了TCP包本身, TCP校验数据块还包括源IP地址,目的IP地址 ...