Longest Increasing Subsequence

The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.

Example

In the first 16 terms of the binary Van der Corput sequence

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

a longest increasing subsequence is

0, 2, 6, 9, 11, 15.

This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not unique: for instance,

0, 4, 6, 9, 11, 15 or
0, 2, 6, 9, 13, 15 or
0, 4, 6, 9, 13, 15

are other increasing subsequences of equal length in the same input sequence.

output:6

思路:

1.初始化一个长度数组lengthsArray,值全为1

2.声明两个变量previousIndex=0,currentIndex=1;

3通过currentIndex<sequence.length遍历sequence

  (1)若sequence[previousIndex]<sequence[currentIndex],则lengthsArray[currentIndex]=max(lengthsArray[currentIndex],lengthsArray[previous]+1)

  (2)previousIndex++;

  (3)若previousIndex=currentIndex,则previous=0,currentIndex++;

代码如下:

/**
* Dynamic programming approach to find longest increasing subsequence.
* Complexity: O(n * n)
*
* @param {number[]} sequence
* @return {number}
*/
export default function dpLongestIncreasingSubsequence(sequence) {
// Create array with longest increasing substrings length and
// fill it with 1-s that would mean that each element of the sequence
// is itself a minimum increasing subsequence.
const lengthsArray = Array(sequence.length).fill(); let previousElementIndex = ;
let currentElementIndex = ; while (currentElementIndex < sequence.length) {
if (sequence[previousElementIndex] < sequence[currentElementIndex]) {
// If current element is bigger then the previous one then
// current element is a part of increasing subsequence which
// length is by one bigger then the length of increasing subsequence
// for previous element.
lengthsArray[currentElementIndex] = max(lengthsArray[currentElementIndex],lengthsArray[previousElementIndex] + );
} // Move previous element index right.
previousElementIndex += ; // If previous element index equals to current element index then
// shift current element right and reset previous element index to zero.
if (previousElementIndex === currentElementIndex) {
currentElementIndex += ;
previousElementIndex = ;
}
} // Find the biggest element in lengthsArray.
// This number is the biggest length of increasing subsequence.
let longestIncreasingLength = ; for (let i = ; i < lengthsArray.length; i += ) {
if (lengthsArray[i] > longestIncreasingLength) {
longestIncreasingLength = lengthsArray[i];
}
} return longestIncreasingLength;
}
												

最长递增子序列-dp问题的更多相关文章

  1. UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)

    Wavio Sequence  Wavio is a sequence of integers. It has some interesting properties. ·  Wavio is of ...

  2. dp之最长递增子序列模板poj3903

    最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS.排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = ...

  3. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  4. Longest Increasing Subsequences(最长递增子序列)的两种DP实现

    一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn).     二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...

  5. [DP]最长递增子序列

    #include <iostream> #include <limits.h> #include <vector> #include <algorithm&g ...

  6. HDU-1160-FatMouse's Speed(DP, 最长递增子序列)

    链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster ...

  7. 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法

    1.题目描述     给定数组arr,返回arr的最长递增子序列. 2.举例     arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答      ...

  8. [程序员代码面试指南]最长递增子序列(二分,DP)

    题目 例:arr=[2,1,5,3,6,4,8,9,7] ,最长递增子序列为1,3,4,8,9 题解 step1:找最长连续子序列长度 dp[]存以arr[i]结尾的情况下,arr[0..i]中的最长 ...

  9. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

随机推荐

  1. 计蒜客 蒜头君回家(有条件的BFS)

    蒜头君要回家,但是他家的钥匙在他的朋友花椰妹手里,他要先从花椰妹手里取得钥匙才能回到家.花椰妹告诉他:“你家的钥匙被我复制了很多个,分别放在不同的地方.” 蒜头君希望能尽快回到家中,他需要首先取得任意 ...

  2. 堆排序算法以及python实现

    堆满足的条件:1,是一颗完全二叉树.2,大根堆:父节点大于各个孩子节点.每个节点都满足这个道理.小根堆同理. parent = (i-1)/2    #i为当前节点 left = 2*i+1 righ ...

  3. python——logging模块

    简介: 日志是一种可以追踪某些软件运行时所发生事件的方法.软件开发人员可以向他们的代码中调用日志记录相关的方法来表明发生了某些事情.不同的事件,被区分在不同的等级中,故通过log分析,可以很轻易地分析 ...

  4. MySQL笔记(二)——查询数据

    数据库管理系统的一个最重要的功能就是数据查询,数据查询不应只是简单的查询数据库中存储的数据,还应该是根据需要对数据进行筛选,以及确定数据以什么样的格式显示.本篇笔记主要介绍单表查询,子查询,连接查询. ...

  5. springboot的linux-docker部署

    将springboot jar应用打包成镜像并在docker运行成容器 https://blog.csdn.net/keepd/article/details/80569797 Docker安装(De ...

  6. IDEA中的常用插件安装以及使用的介绍

    IDEA中的lombok插件安装以及各注解的详细介绍 Grep Console 当你密密麻麻一大片的日志,去查看起来,很容易看花眼:这个工具正好解决了这个痛点,可以说它就是 IDEA 自带 Conso ...

  7. 通过if语句实现for循环的提前结束

    /************************************************************************* > File Name: mybreakin ...

  8. linux epoll 任务队列多线程模型

    /* * *EPOLL ET 触发必须使用非阻塞,LT触发可以阻塞/非阻塞. *read 函数 非阻塞读需 忙轮寻 soket关闭返回0,循环读完数据 *如果已经读完再读read返回 -1,errno ...

  9. soap,restful 两种web service实现方式比较

    web service服务 目前常用的实现web service的方式有有两种 1.SOAP 原始的web service标准,一堆标准,不过这些标准是在开发框架中实现的,有上层接口,可以调用 2.R ...

  10. bcp文件, 逗号文件

    bcp 实用工具 https://docs.microsoft.com/zh-cn/sql/tools/bcp-utility?view=sql-server-2017 大容量复制程序实用工具 (bc ...