最长递增子序列-dp问题
Longest Increasing Subsequence
The longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.
Example
In the first 16 terms of the binary Van der Corput sequence
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15
a longest increasing subsequence is
0, 2, 6, 9, 11, 15.
This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not unique: for instance,
0, 4, 6, 9, 11, 15 or
0, 2, 6, 9, 13, 15 or
0, 4, 6, 9, 13, 15
are other increasing subsequences of equal length in the same input sequence.
output:6
思路:
1.初始化一个长度数组lengthsArray,值全为1
2.声明两个变量previousIndex=0,currentIndex=1;
3通过currentIndex<sequence.length遍历sequence
(1)若sequence[previousIndex]<sequence[currentIndex],则lengthsArray[currentIndex]=max(lengthsArray[currentIndex],lengthsArray[previous]+1)
(2)previousIndex++;
(3)若previousIndex=currentIndex,则previous=0,currentIndex++;

代码如下:
/**
* Dynamic programming approach to find longest increasing subsequence.
* Complexity: O(n * n)
*
* @param {number[]} sequence
* @return {number}
*/
export default function dpLongestIncreasingSubsequence(sequence) {
// Create array with longest increasing substrings length and
// fill it with 1-s that would mean that each element of the sequence
// is itself a minimum increasing subsequence.
const lengthsArray = Array(sequence.length).fill(); let previousElementIndex = ;
let currentElementIndex = ; while (currentElementIndex < sequence.length) {
if (sequence[previousElementIndex] < sequence[currentElementIndex]) {
// If current element is bigger then the previous one then
// current element is a part of increasing subsequence which
// length is by one bigger then the length of increasing subsequence
// for previous element.
lengthsArray[currentElementIndex] = max(lengthsArray[currentElementIndex],lengthsArray[previousElementIndex] + );
} // Move previous element index right.
previousElementIndex += ; // If previous element index equals to current element index then
// shift current element right and reset previous element index to zero.
if (previousElementIndex === currentElementIndex) {
currentElementIndex += ;
previousElementIndex = ;
}
} // Find the biggest element in lengthsArray.
// This number is the biggest length of increasing subsequence.
let longestIncreasingLength = ; for (let i = ; i < lengthsArray.length; i += ) {
if (lengthsArray[i] > longestIncreasingLength) {
longestIncreasingLength = lengthsArray[i];
}
} return longestIncreasingLength;
}
最长递增子序列-dp问题的更多相关文章
- UVa 10534 Wavio Sequence (最长递增子序列 DP 二分)
Wavio Sequence Wavio is a sequence of integers. It has some interesting properties. · Wavio is of ...
- dp之最长递增子序列模板poj3903
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS.排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = ...
- 动态规划(DP),最长递增子序列(LIS)
题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...
- Longest Increasing Subsequences(最长递增子序列)的两种DP实现
一.本文内容 最长递增子序列的两种动态规划算法实现,O(n^2)及O(nlogn). 二.问题描述 最长递增子序列:给定一个序列,从该序列找出最长的 升序/递增 子序列. 特点:1.子序列不要 ...
- [DP]最长递增子序列
#include <iostream> #include <limits.h> #include <vector> #include <algorithm&g ...
- HDU-1160-FatMouse's Speed(DP, 最长递增子序列)
链接: https://vjudge.net/problem/HDU-1160 题意: FatMouse believes that the fatter a mouse is, the faster ...
- 求解最长递增子序列(LIS) | 动态规划(DP)+ 二分法
1.题目描述 给定数组arr,返回arr的最长递增子序列. 2.举例 arr={2,1,5,3,6,4,8,9,7},返回的最长递增子序列为{1,3,4,8,9}. 3.解答 ...
- [程序员代码面试指南]最长递增子序列(二分,DP)
题目 例:arr=[2,1,5,3,6,4,8,9,7] ,最长递增子序列为1,3,4,8,9 题解 step1:找最长连续子序列长度 dp[]存以arr[i]结尾的情况下,arr[0..i]中的最长 ...
- poj 1631 Bridging signals (二分||DP||最长递增子序列)
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9234 Accepted: 5037 ...
随机推荐
- Spring Cloud Hystrix熔断器隔离方案
Hystrix组件提供了两种隔离的解决方案:线程池隔离和信号量隔离.两种隔离方式都是限制对共享资源的并发访问量,线程在就绪状态.运行状态.阻塞状态.终止状态间转变时需要由操作系统调度,占用很大的性 ...
- ZJNU 1535 - 新建的大楼--中高级
因为从俯视图看,输入输出的视角是从右下方看向左上方的 所以左上角的正方体最有可能被其他正方体挡住 立体上,底部的正方体最有可能被顶部的正方体挡住 所以绘图应该从后往前,从下往上绘制 剩下的就是一大堆计 ...
- ZJNU 1531 - 丢手绢--中级
可以将相同的人数分块存在数组gp中先 例如RRGGGRBBBBRR 则gp[1~5]={2,3,1,4,2} 首先可以知道,如果要让没有相邻的相同,只需要每个gp[i]/2向下取整即可得出最少需要改变 ...
- 洛谷 P1082 同余方程(exgcd)
题目传送门 解题思路: 因为推导过程过于复杂,懒得写,所以题解传送门 AC代码: #include<iostream> #include<cstdio> using names ...
- Faraday Future,FF2019年一季度前完成第一阶段5亿美元左右的A+轮融资,2019年年底前完成7亿美元的Pre-IPO轮融资,2020IPO
FF2019年一季度前完成第一阶段5亿美元左右的A+轮融资,2019年年底前完成7亿美元的Pre-IPO轮融资,2020IPO 区块链公司先行宣布将对FF进行投资.EVAIO(中文名:伊娃)公司 跨链 ...
- Linux笔记(二)
Linux笔记(二) 一.软件包管理 1.rpm命令使用:Linux安装软件包的三种方法 rpm工具类似于Windows的exe文件,可以直接进行安装,而且安装路径和文件名一般都是固定好的. 在Cen ...
- iOS 直接使用16进制颜色
在做iOS开发时,一般我们会吸色,就是产品给的图我们一般会吸色,但是最近吸色时候,老大说有较大的颜色偏差,所以要求我们直接使用UI给出的额16进制颜色,你也可以搜索<RGB颜色值转换成十六进制颜 ...
- maven坐标 加速下载
<repositories> <repository> <id>aliyun</id> <name>aliyun</name> ...
- JS替换变量中的文字字母
var text='Hello world, Hello world'; var b= text.replace('world','zhengxiaoya'); // 找到字符串中的第一个'world ...
- 95)PHP,文件上传知识和代码
首先是知识总结: 上传: 从浏览器端传输的到服务器端. 请求时: 数据从浏览器端传输到服务器端. 可见: 上传,发生在浏览器向服务器发出请求过程中. 文件,对于浏览器来讲,就是表单中的一个特殊类型的数 ...