np.tile 和np.newaxis
- output
- array([[ 0.24747071, -0.43886742],
- [-0.03916734, -0.70580089],
- [ 0.00462337, -0.51431584],
- ...,
- [ 0.15071507, -0.57029653],
- [ 0.06246116, -0.33766761],
- [ 0.08218585, -0.59906501]], dtype=float32)
- ipdb> np.shape(output)
- (64, 2)
- ipdb> np.max(output, axis=1)[:,np.newaxis]
- array([[ 0.24747071],
- [-0.03916734],
- [ 0.00462337],
- ...,
- [ 0.15071507],
- [ 0.06246116],
- [ 0.08218585]], dtype=float32)
- ipdb> np.tile(np.max(output, axis=1)[:,np.newaxis], [1,2]))
- *** SyntaxError: invalid syntax (<stdin>, line 1)
- ipdb> np.tile(np.max(output, axis=1)[:,np.newaxis], [1,2])
- array([[ 0.24747071, 0.24747071],
- [-0.03916734, -0.03916734],
- [ 0.00462337, 0.00462337],
- ...,
- [ 0.15071507, 0.15071507],
- [ 0.06246116, 0.06246116],
- [ 0.08218585, 0.08218585]], dtype=float32)
- ipdb> output
- array([[ 0.24747071, -0.43886742],
- [-0.03916734, -0.70580089],
- [ 0.00462337, -0.51431584],
- ...,
- [ 0.15071507, -0.57029653],
- [ 0.06246116, -0.33766761],
- [ 0.08218585, -0.59906501]], dtype=float32)
- ipdb> np.max(output, axis=1)
- array([ 0.24747071, -0.03916734, 0.00462337, ..., 0.15071507,
- 0.06246116, 0.08218585], dtype=float32)
- ipdb> np.exp(output - np.tile(np.max(output, axis=1)[:,np.newaxis], [1,2]))
- array([[ 1. , 0.50341612],
- [ 1. , 0.51343411],
- [ 1. , 0.59515154],
- ...,
- [ 1. , 0.48626012],
- [ 1. , 0.67023373],
- [ 1. , 0.50598365]], dtype=float32)
1- np.newaxis
np.newaxis的功能是插入新维度,看下面的例子:
print a.shape
print a
输出结果
(5,)
[1 2 3 4 5]
可以看出a是一个一维数组,
a=np.array([1,2,3,4,5])
b=a[np.newaxis,:]
print a.shape,b.shape
print a
print b
输出结果:
(5,) (1, 5)
[1 2 3 4 5]
[[1 2 3 4 5]]
x_data=np.linspace(-1,1,300)[:,np.newaxis]
a=np.array([1,2,3,4,5])
b=a[:,np.newaxis]
print a.shape,b.shape
print a
print b
输出结果
(5,) (5, 1)
[1 2 3 4 5]
[[1]
[2]
[3]
[4]
[5]]
2. np.tile
函数原型:numpy.tile(A,reps) #简单理解是此函数将A进行重复输出
其中A和reps都是array_like的参数,A可以是:array,list,tuple,dict,matrix以及基本数据类型int,string,float以及bool类型,reps的类型可以是tuple,list,dict,array,int,bool,但不可以是float,string,matrix类型。
计较常用的形式有两种,是将A简单进行一维重复输出,和将A进行二维重复后输出。
一维重复:
- import numpy as np
- a = [[1,2,3],[4,5,5]]
- b = np.tile(a,3)
- print(b)
- #输出为
- #[[1 2 3 1 2 3 1 2 3]
- # [4 5 5 4 5 5 4 5 5]]
二维重复:#上面的一维重复相当于 b = np.tile(a,[1,3])
- import numpy as np
- a = [[1,2,3],[4,5,5]]
- b = np.tile(a,[2,3])
- print(b)
- #输出为:
- #[[1 2 3 1 2 3 1 2 3]
- # [4 5 5 4 5 5 4 5 5]
- # [1 2 3 1 2 3 1 2 3]
- # [4 5 5 4 5 5 4 5 5]]
2.1 np.tile
numpy.tile()是个什么函数呢,说白了,就是把数组沿各个方向复制
比如 a = np.array([0,1,2]), np.tile(a,(2,1))就是把a先沿x轴(就这样称呼吧)复制1倍,即没有复制,仍然是 [0,1,2]。 再把结果沿y方向复制2倍,即最终得到
array([[0,1,2],
[0,1,2]])
同理:
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2) #沿X轴复制2倍
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))#沿X轴复制1倍(相当于没有复制),再沿Y轴复制2倍
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
numpy.tile()具体细节,如下:
Construct an array by repeating A the number of times given by reps.
If reps has length d, the result will have dimension of max(d, A.ndim).
If A.ndim < d, A is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote A to d-dimensions manually before calling this function.
If A.ndim > d, reps is promoted to A.ndim by pre-pending 1’s to it. Thus for an A of shape (2, 3, 4, 5), a repsof (2, 2) is treated as (1, 1, 2, 2).
Note : Although tile may be used for broadcasting, it is strongly recommended to use numpy’s broadcasting operations and functions.
Parameters: |
A : array_like
reps : array_like
|
---|---|
Returns: |
c : ndarray
|
See also
- repeat
- Repeat elements of an array.
- broadcast_to
- Broadcast an array to a new shape
Examples
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
原文:https://blog.csdn.net/wuguangbin1230/article/details/77678785
np.tile 和np.newaxis的更多相关文章
- np.tile语法
>>> v = np.array([1, 0, 1])>>> vv = np.tile(v,(4,1))>>> print vv[[1 0 1] ...
- np.repeat 与 np.tile
1.Numpy的 tile() 函数,就是将原矩阵横向.纵向地复制.tile 是瓷砖的意思,顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 举个例子,原矩阵: import numpy as np ...
- np.tile(), np.repeat() 和 tf.tile()
以上三个函数,主要区别在于能够拓展维度上和重复方式: np.tile() 能够拓展维度,并且整体重复: a = np.array([0,1,2]) np.tile(a,(2,2)) # out # a ...
- numpy 辨异(四)—— np.repeat 与 np.tile
>> import numpy as np >> help(np.repeat) >> help(np.tile) 二者执行的是均是复制操作: np.repeat: ...
- numpy中np.c_和np.r_
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的mer ...
- p,np,npc,np难问题,确定图灵机与非确定图灵机
本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文, ...
- numpy 下的数据结构与数据类型的转换(np.array vs. np.asarray)
1. np.asarray -- numpy 风格的类型转换 从已有多维数组创建新的多维数组,数据类型可重新设置 >> B = np.asarray(A, dtype='int32') 2 ...
- dtypes.py", line 499 _np_qint8 = np.dtype([("qint8", np.int8, (1,)])
Traceback (most recent call last): File "<stdin>", line 1, in <module> File &q ...
- python多项式拟合:np.polyfit 和 np.polyld
python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等. 1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin import numpy as ...
随机推荐
- pip freeze
总结: 1.输出安装的包信息,并在另一个环境快速安装 Generate output suitable for a requirements file. $ pip freeze docutils== ...
- 2018/03/25 每日一个Linux命令 之 df
Linux df命令用于显示目前在Linux系统上的文件系统的磁盘使用情况统计. 就像在windows下打开我的电脑一样会统计各个磁盘一样的情况 主要用于查看磁盘空间占用情况 -- [@hong:~] ...
- 迷宫城堡--hdu1269(连通图)
题目链接 连通图模板题: #include<cstdio> #include<cstdlib> #include<cmath> #include<iost ...
- 洛谷P3599 Koishi Loves Construction 构造
正解:构造 解题报告: 传送门! 这题俩问嘛,就分成两个问题港QwQ 就按顺序趴,先港第一问QwQ 首先要发现,n在膜n意义下就是0嘛 那作为前缀和的话显然它就只能放在第一个 然后再想下,发现,如果n ...
- BZOJ5056 OI游戏 最短路+组合数学
链接接接接接! 正解:最短路+小学奥数 乘法原理 解题报告: 首先读懂题意(,,,我觉得我吃枣死于语文太差读不懂题目QAQ 大意就是港,要求从第一个点到其他各点的长度都是最短的方案有多少个(ummm, ...
- (3.4)mysql基础深入——mysql.server启动脚本源码阅读与分析
(3.4)mysql基础深入——mysql.server启动脚本源码阅读与分析 my.server主要分为3大部分 [1]变量初始化部分 [2]函数声明部分 [3]具体执行部分 #!/bin/sh # ...
- mysql 内置功能 存储过程 创建无参存储过程
操作哪个数据库,就把存储过程建到那个数据库 例如 现在use db2; 应该把存储过程 建立到db2数据库里 创建无参存储过程 delimiter // # 设置mysql结束符合为// create ...
- vuex使用
1.装包:npm install vuex -S 2.引入:import Vuex from 'vuex' //这些都是写在man.js中 3.加载到Vue中:Vue.use(Vuex) 4 ...
- a文件.o文件和.so文件有什么区别?
.o类似于windows的.obj .a是多个.o合在一起,用于静态连接. .so文件(shared object)类似于.dll文件.,用于动态连接.
- elasticsearch 通过外网访问
elasticsearch 只能通过本地访问 需要修改 network.host: 0.0.0.0. 重新开启:提示错误: ERROR: [2] bootstrap checks failed[1] ...