洛谷.2051.[AHOI2009]中国象棋(DP)
/*
每行每列不能超过2个棋子,求方案数
前面行对后面行的影响只有 放了0个、1个、2个 棋子的列数,与排列方式无关
所以设f[i][j][k]表示前i行,放了0个棋子的有j列,放了1个棋子的有k列,则放了2个棋子的为(m-j-k)列
则放棋子一共可分为6种情况
不放棋子:1.f[i+1][j+2][k] += f[i][j][k]
放一个棋子:2.放在没有棋子的那一列 f[i+1][j-1][k+1] += f[i][j][k]*j
3.放在有棋子的那一列 f[i+1][j][k-1] += f[i][j][k]*k
放两个棋子:4.都放在没有棋子的两列 f[i+1][j-2][k+2] += f[i][j][k]*C(j,2)
5.都放在有一个棋子的两列 f[i+1][j][k-2] += f[i][j][k]*C(k,2)
6.一个放在没有棋子的一列,一个放在有一个棋子的一列 f[i+1][j-1][k] += f[i][j][k]*j*k
或用f[i][j][k]表示第i行,放了1个棋子的有j列,放了2个棋子的有k列,没放棋子的有(m-j-k)列
*/
#include<cstdio>
using namespace std;
const int N=105,mod=9999973;
int n,m;
long long f[N][N][N];//long long!
inline int C(int n)//C(n,2)
{
return n*(n-1)>>1;
}
//inline void Add(int /&n,int b)
//{
// n+=b;
// n-= n>=mod?mod:0;
//}
int main()
{
scanf("%d%d",&n,&m);
f[0][m][0]=1;
// f[0][0][0]=1;
for(int i=0;i<n;++i)
for(int j=0;j<=m;++j)
for(int k=0;k+j<=m;++k)
if(f[i][j][k])//0是无意义的
{
// f[i+1][j][k]=(f[i+1][j][k]+f[i][j][k])%mod;
// if(m-k-j>=1) f[i+1][j+1][k]=(f[i+1][j+1][k]+f[i][j][k]*(m-k-j))%mod;
// if(j) f[i+1][j-1][k+1]=(f[i+1][j-1][k+1]+f[i][j][k]*j)%mod;
// if(m-k-j>=2) f[i+1][j+2][k]=(f[i+1][j+2][k]+f[i][j][k]*C(m-k-j))%mod;
// if(j>=2) f[i+1][j-2][k+2]=(f[i+1][j-2][k+2]+f[i][j][k]*C(j))%mod;
// if(m-k-j>=1 && j>=1) f[i+1][j][k+1]=(f[i+1][j][k+1]+f[i][j][k]*(m-k-j)*j)%mod;
//注意 && j>=1!虽然能得到一个j,但条件中必须有一个j
f[i+1][j][k]=(f[i+1][j][k]+f[i][j][k])%mod;//不放不会增加不放棋子的列数!
if(j>=1) f[i+1][j-1][k+1]=(f[i+1][j-1][k+1]+f[i][j][k]*j%mod)%mod;
if(k>=1) f[i+1][j][k-1]=(f[i+1][j][k-1]+f[i][j][k]*k%mod)%mod;
if(j>=2) f[i+1][j-2][k+2]=(f[i+1][j-2][k+2]+f[i][j][k]*C(j)%mod)%mod;
if(k>=2) f[i+1][j][k-2]=(f[i+1][j][k-2]+f[i][j][k]*C(k)%mod)%mod;
if(j>=1 && k>=1) f[i+1][j-1][k]=(f[i+1][j-1][k]+f[i][j][k]*j*k%mod)%mod;
//跑得慢。。懵逼
}
long long res=0;
for(int i=0;i<=m;++i)//枚举不放的列
for(int j=0;i+j<=m;++j)//枚举放一个的列
res=(res+f[n][i][j])%mod;//两种确定,第三种列也确定
printf("%lld",res);
return 0;
}
洛谷.2051.[AHOI2009]中国象棋(DP)的更多相关文章
- BZOJ1801或洛谷2051 [AHOI2009]中国象棋
BZOJ原题链接 洛谷原题链接 这题挺难想状态的,刚看题感觉是状压,但数据\(100\)显然不可能. 注意到每行每列只能放\(0\sim 2\)个棋子,所以我们可以将这个写入状态. 设\(f[i][j ...
- 洛谷P2051 [AHOI2009]中国象棋(dp)
题面 luogu 题解 \(50pts:\)显然是\(3\)进制状压\(dp\) \(100pts:\) 一行一行地考虑 \(f[i][j][k]\)表示前\(i\)行,有\(j\)列放了一个,有\( ...
- 洛谷2051 [AHOI2009]中国象棋
题目链接 题意概述:n行m列棋盘放若干个棋子每行每列最多两个求方案总数,答案对9999973取模. 可以比较容易看出这是个dp,设f[i][j][k]表示前i行j列放1个棋子k列放2个棋子的方案总数. ...
- 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP
P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...
- [洛谷P2051] [AHOI2009]中国象棋
洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...
- 洛谷 P2051 [AHOI2009]中国象棋 解题报告
P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...
- 洛谷 P2051 [AHOI2009]中国象棋
题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...
- 洛谷P2051 [AHOI2009] 中国象棋(状压dp)
题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...
- Luogu 2051[AHOI2009]中国象棋 - DP
Description 在 $n * m$ 的格子上放若干个炮, 使得每个炮都不能攻击到其他炮 Solution 定义数组f[ i ][ j ][ k ] 表示到了第 i 行, 已经有2个炮的列数为 ...
随机推荐
- ARMV8 datasheet学习笔记5:异常模型
1.前言 2.异常类型描述 见 ARMV8 datasheet学习笔记4:AArch64系统级体系结构之编程模型(1)-EL/ET/ST 一文 3. 异常处理路由对比 AArch32.AArch64架 ...
- BLE获取iphone mac地址的方法--【原创】
本人用的BLE是TIcc2541,1.3.2协议栈 1.首先要说明的是,iphone手机将信息保护了,BLE设备读到的iphone地址是随机的,每次连接都会不同 2.下面我就具体说明如何查看手机的ma ...
- java 基础(转自索宁)
一.方法函数 函数也称为方法,就是定义在类中的具有特定功能的一段独立代码.用于定义功能,提高代码的复用性. 函数的特点1> 定义函数可以将功能代码进行封装,便于对该功能进行复用:2> 函数 ...
- Centos6安装FreeSWITCH 1.5时./configure问题解决记录
系统:Centos 6.4 64位: FreeSWITCH版本:1.5 具体的安装过程参考FreeSWITCH 官网wiki (也可以参考我的博客<Centos6安装FreeSWITCH> ...
- jquery学习集合
跳转网页:$(location).attr('href', '/index');
- 如何在DOS窗口复制和粘贴命令
在键盘上按下windows+R键,打开运行窗口. 在“打开”处输入cmd,并按下enter键,打开DOS窗口. 把鼠标移动到DOS窗口标题处,单击鼠标右键,选择属性. 把编辑选项处的“快速编辑模式”勾 ...
- JS/Jquery版本的俄罗斯方块(附源码分析)
转载于http://blog.csdn.net/unionline/article/details/63250597 且后续更新于此 1.前言 写这个jQuery版本的小游戏的缘由在于我想通过从零到有 ...
- Java 开发环境配置--eclipse工具进行java开发
Java 开发环境配置 在本章节中我们将为大家介绍如何搭建Java开发环境. Windows 上安装开发环境 Linux 上安装开发环境 安装 Eclipse 运行 Java Cloud Studio ...
- TCP/IP、Http大纲
TPC/IP协议是传输层协议,主要解决数据如何在网络中传输,而HTTP是应用层协议,主要解决如何包装数据.关于TCP/IP和HTTP协议的关系,网络有一段比较容易理解的介绍:“我们在传输数据时,可以只 ...
- 视觉显著性检测(Visual saliency detection)相关概念
视觉显著性检测(Visual saliency detection)指通过智能算法模拟人的视觉特点,提取图像中的显著区域(即人类感兴趣的区域). 视觉注意机制(Visual Attention Mec ...