题目链接

/*
每行每列不能超过2个棋子,求方案数
前面行对后面行的影响只有 放了0个、1个、2个 棋子的列数,与排列方式无关
所以设f[i][j][k]表示前i行,放了0个棋子的有j列,放了1个棋子的有k列,则放了2个棋子的为(m-j-k)列
则放棋子一共可分为6种情况
不放棋子:1.f[i+1][j+2][k] += f[i][j][k]
放一个棋子:2.放在没有棋子的那一列 f[i+1][j-1][k+1] += f[i][j][k]*j
3.放在有棋子的那一列 f[i+1][j][k-1] += f[i][j][k]*k
放两个棋子:4.都放在没有棋子的两列 f[i+1][j-2][k+2] += f[i][j][k]*C(j,2)
5.都放在有一个棋子的两列 f[i+1][j][k-2] += f[i][j][k]*C(k,2)
6.一个放在没有棋子的一列,一个放在有一个棋子的一列 f[i+1][j-1][k] += f[i][j][k]*j*k
或用f[i][j][k]表示第i行,放了1个棋子的有j列,放了2个棋子的有k列,没放棋子的有(m-j-k)列
*/
#include<cstdio>
using namespace std;
const int N=105,mod=9999973; int n,m;
long long f[N][N][N];//long long! inline int C(int n)//C(n,2)
{
return n*(n-1)>>1;
}
//inline void Add(int /&n,int b)
//{
// n+=b;
// n-= n>=mod?mod:0;
//} int main()
{
scanf("%d%d",&n,&m);
f[0][m][0]=1;
// f[0][0][0]=1;
for(int i=0;i<n;++i)
for(int j=0;j<=m;++j)
for(int k=0;k+j<=m;++k)
if(f[i][j][k])//0是无意义的
{
// f[i+1][j][k]=(f[i+1][j][k]+f[i][j][k])%mod;
// if(m-k-j>=1) f[i+1][j+1][k]=(f[i+1][j+1][k]+f[i][j][k]*(m-k-j))%mod;
// if(j) f[i+1][j-1][k+1]=(f[i+1][j-1][k+1]+f[i][j][k]*j)%mod;
// if(m-k-j>=2) f[i+1][j+2][k]=(f[i+1][j+2][k]+f[i][j][k]*C(m-k-j))%mod;
// if(j>=2) f[i+1][j-2][k+2]=(f[i+1][j-2][k+2]+f[i][j][k]*C(j))%mod;
// if(m-k-j>=1 && j>=1) f[i+1][j][k+1]=(f[i+1][j][k+1]+f[i][j][k]*(m-k-j)*j)%mod;
//注意 && j>=1!虽然能得到一个j,但条件中必须有一个j
f[i+1][j][k]=(f[i+1][j][k]+f[i][j][k])%mod;//不放不会增加不放棋子的列数!
if(j>=1) f[i+1][j-1][k+1]=(f[i+1][j-1][k+1]+f[i][j][k]*j%mod)%mod;
if(k>=1) f[i+1][j][k-1]=(f[i+1][j][k-1]+f[i][j][k]*k%mod)%mod;
if(j>=2) f[i+1][j-2][k+2]=(f[i+1][j-2][k+2]+f[i][j][k]*C(j)%mod)%mod;
if(k>=2) f[i+1][j][k-2]=(f[i+1][j][k-2]+f[i][j][k]*C(k)%mod)%mod;
if(j>=1 && k>=1) f[i+1][j-1][k]=(f[i+1][j-1][k]+f[i][j][k]*j*k%mod)%mod;
//跑得慢。。懵逼
}
long long res=0;
for(int i=0;i<=m;++i)//枚举不放的列
for(int j=0;i+j<=m;++j)//枚举放一个的列
res=(res+f[n][i][j])%mod;//两种确定,第三种列也确定
printf("%lld",res); return 0;
}

洛谷.2051.[AHOI2009]中国象棋(DP)的更多相关文章

  1. BZOJ1801或洛谷2051 [AHOI2009]中国象棋

    BZOJ原题链接 洛谷原题链接 这题挺难想状态的,刚看题感觉是状压,但数据\(100\)显然不可能. 注意到每行每列只能放\(0\sim 2\)个棋子,所以我们可以将这个写入状态. 设\(f[i][j ...

  2. 洛谷P2051 [AHOI2009]中国象棋(dp)

    题面 luogu 题解 \(50pts:\)显然是\(3\)进制状压\(dp\) \(100pts:\) 一行一行地考虑 \(f[i][j][k]\)表示前\(i\)行,有\(j\)列放了一个,有\( ...

  3. 洛谷2051 [AHOI2009]中国象棋

    题目链接 题意概述:n行m列棋盘放若干个棋子每行每列最多两个求方案总数,答案对9999973取模. 可以比较容易看出这是个dp,设f[i][j][k]表示前i行j列放1个棋子k列放2个棋子的方案总数. ...

  4. 洛谷 P2051 [AHOI2009]中国象棋 状态压缩思想DP

    P2051 [AHOI2009]中国象棋 题意: 给定一个n*m的空棋盘,问合法放置任意多个炮有多少种情况.合法放置的意思是棋子炮不会相互打到. 思路: 这道题我们可以发现因为炮是隔一个棋子可以打出去 ...

  5. [洛谷P2051] [AHOI2009]中国象棋

    洛谷题目链接:[AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法 ...

  6. 洛谷 P2051 [AHOI2009]中国象棋 解题报告

    P2051 [AHOI2009]中国象棋 题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法. ...

  7. 洛谷 P2051 [AHOI2009]中国象棋

    题目描述 这次小可可想解决的难题和中国象棋有关,在一个N行M列的棋盘上,让你放若干个炮(可以是0个),使得没有一个炮可以攻击到另一个炮,请问有多少种放置方法.大家肯定很清楚,在中国象棋中炮的行走方式是 ...

  8. 洛谷P2051 [AHOI2009] 中国象棋(状压dp)

    题目简介 n*m的棋盘,对每行放炮,要求每行每列炮数<=2,求方案数%9999973 N,M<=100 题目分析 算法考虑 考虑到N,M范围较小,每一行状态只与前面的行状态有关,考虑状压D ...

  9. Luogu 2051[AHOI2009]中国象棋 - DP

    Description 在 $n * m$ 的格子上放若干个炮, 使得每个炮都不能攻击到其他炮 Solution 定义数组f[ i ][ j ][ k ] 表示到了第 i 行, 已经有2个炮的列数为 ...

随机推荐

  1. 【逆向工具】使用x64dbg+spy去除WinRAR5.40(64位)广告弹框

    1 学习目标 WinRAR5.40(64位)的弹框广告去除,由于我的系统为x64版本,所以安装了WinRAR(x64)版本. OD无法调试64位的程序,可以让我熟悉x64dbg进行调试的界面. 其次是 ...

  2. class_create(),device_create自动创建设备文件结点【转】

    本文参考来自CSDN博客,转载请标明出处:http://blog.csdn.net/zhenwenxian/archive/2010/03/28/5424434.aspx 本文转自:http://ww ...

  3. 利用excel办公软件快速拼凑sql语句

    日常工作中经常会收到excel整理好的部门或者人员等数据信息并需要批量更新或者插入到数据库中,常用的办法有导入.脚本拼凑执行等,今天我介绍直接使用excel快速拼凑sql语句的方法 1.update批 ...

  4. PYTHON-流程控制之if/while/for-练习

    # 1 练习题## 简述编译型与解释型语言的区别,且分别列出你知道的哪些语言属于编译型,哪些属于解释型# 编译型:C, 谷歌翻译,一次翻译后结果后重复使用# 解释型:Python, 同声传译,边执行边 ...

  5. jquery之jsonp相关知识

    这里讲的不错,可以参考:链接 我自己的理解: 服务器为了保证数据的安全,同时也为了保证不被攻击, 凡是来服务器请求的url,域名必须和服务器一致,否则就是跨域请求 为了解决跨域问题,就出现了jsonp ...

  6. 从输入url到显示网页,后台发生了什么?

    参考http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/ http://www.cnblogs.com/we ...

  7. scanf的一个问题(暂未解决)

    如下代码,没有按照预想的那样运行: int a; char b; printf("input a integer\n"); scanf("%d", &a ...

  8. 实现数据导出为.csv表格

    数据导出实现步骤: 1.查找出要导出的数据,整理为二维数组. 2.定义导出表格的字段 3.将整理的二维数组按导出表格定义的字段重新整理. 4.将整理的二维数组写入服务器中已有的一个.csv文件. 5. ...

  9. #9 //[SDOI2017]新生舞会

    题解: 分数规划+费用流 常数巨大开o2加inline加register还是不行 我也不知道为什么 代码: #include <bits/stdc++.h> using namespace ...

  10. day15--JavaScript语言

    JavaScript JavaScript是一门单独的编程语言.浏览器内置JavaScript的解释器. 独立的语言,浏览器具有js解释器. 存在与HTML中,在HTML中写JavaScript,存在 ...