Spark中的partition和block的关系
hdfs中的block是分布式存储的最小单元,类似于盛放文件的盒子,一个文件可能要占多个盒子,但一个盒子里的内容只可能来自同一份文件。假设block设置为128M,你的文件是250M,那么这份文件占3个block(128+128+2)。这样的设计虽然会有一部分磁盘空间的浪费,但是整齐的block大小,便于快速找到、读取对应的内容。(p.s. 考虑到hdfs冗余设计,默认三份拷贝,实际上3*3=9个block的物理空间。)
spark中的partition 是弹性分布式数据集RDD的最小单元,RDD是由分布在各个节点上的partition 组成的。partition 是指的spark在计算过程中,生成的数据在计算空间内最小单元,同一份数据(RDD)的partition 大小不一,数量不定,是根据application里的算子和最初读入的数据分块数量决定的,这也是为什么叫“弹性分布式”数据集的原因之一。
总结:
block位于存储空间、partition 位于计算空间,
block的大小是固定的、partition 大小是不固定的,
block是有冗余的、不会轻易丢失,partition(RDD)没有冗余设计、丢失之后重新计算得到
在storage模块里面所有的操作都是和block相关的,但是在RDD里面所有的运算都是基于partition的,那么partition是如何与block对应上的呢?
RDD计算的核心函数是iterator()函数:
如果当前RDD的storage level不是NONE的话,表示该RDD在BlockManager中有存储,那么调用CacheManager中的getOrCompute()函数计算RDD,在这个函数中partition和block发生了关系:
首先根据RDD id和partition index构造出block id (rdd_xx_xx),接着从BlockManager中取出相应的block。
- 如果该block存在,表示此RDD在之前已经被计算过和存储在BlockManager中,因此取出即可,无需再重新计算。
- 如果该block不存在则需要调用RDD的computeOrReadCheckpoint()函数计算出新的block,并将其存储到BlockManager中。
需要注意的是block的计算和存储是阻塞的,若另一线程也需要用到此block则需等到该线程block的loading结束。
Spark中的partition和block的关系的更多相关文章
- Spark中Task,Partition,RDD、节点数、Executor数、core数目的关系和Application,Driver,Job,Task,Stage理解
梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在H ...
- Spark中Task,Partition,RDD、节点数、Executor数、core数目(线程池)、mem数
Spark中Task,Partition,RDD.节点数.Executor数.core数目的关系和Application,Driver,Job,Task,Stage理解 from:https://bl ...
- Spark中资源与任务的关系
在介绍Spark中的任务和资源之前先解释几个名词: Dirver Program:运行Application的main函数(用户提交的jar包中的main函数)并新建SparkContext实例的程序 ...
- Spark中的编程模型
1. Spark中的基本概念 Application:基于Spark的用户程序,包含了一个driver program和集群中多个executor. Driver Program:运行Applicat ...
- 关于Spark中RDD的设计的一些分析
RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...
- Spark中shuffle的触发和调度
Spark中的shuffle是在干嘛? Shuffle在Spark中即是把父RDD中的KV对按照Key重新分区,从而得到一个新的RDD.也就是说原本同属于父RDD同一个分区的数据需要进入到子RDD的不 ...
- 【原】Spark中Job的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码 ...
- 【Spark篇】--Spark中的宽窄依赖和Stage的划分
一.前述 RDD之间有一系列的依赖关系,依赖关系又分为窄依赖和宽依赖. Spark中的Stage其实就是一组并行的任务,任务是一个个的task . 二.具体细节 窄依赖 父RDD和子RDD parti ...
- 【Spark篇】---Spark中控制算子
一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化 ...
随机推荐
- mac yarn 安装
通过HomeBrew安装 brew install yarn 升级yarn brew upgrade yarn 查看版本 yarn -v 1.15.2
- IntelliJ IDEA连接TFS local workspace无法正常签入
前几天为了便于在本地修改,将TFS workspace的类型从Server修改为Local.基于Visual Studio的开发正常没有问题,用IntelliJ IDEA时却提示以下错误: Error ...
- Python基础爬虫
搭建环境: win10,Python3.6,pycharm,未设虚拟环境 之前写的爬虫并没有架构的思想,且不具备面向对象的特征,现在写一个基础爬虫架构,爬取百度百科,首先介绍一下基础爬虫框架的五大模块 ...
- PAT甲级1060 Are They Equal【模拟】
题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805413520719872 题意: 给定两个数,表示成0.xxxx ...
- hdu3613 Best Reward【Manacher】
Best Reward Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- 【TOP100案例专访】当当网工程师林嘉琦谈双11大促经验及APM实践
导读:第七届TOP100全球软件案例研究峰会将于11月30日-12月3日在北京国家会议中心举办,本届峰会以“释放AI生产力 让组织向智能化演进”为开幕式主题,旨在推动企业在趋势下拥抱AI.探索和思考A ...
- 专访姚冬:All-in-One,智能时代下企业需要更快速的变革
2017年,msup将咨询服务列入公司发展战略目标,并邀请前IBM大中华区技术总监姚冬成为咨询合伙人.近一年来,msup在咨询服务方面持续发力,与包括百度.平安科技.用友等在内的大型公司形成企业合作联 ...
- LUA 语言易混点
--代码: tab1 = { key1 = "val1", key2 = "val2","val2", "val3" , ...
- 阿里云mysql远程登录报ERROR 2027(HY000)
mysql远程登录的命令是: mysql -h数据库地址 -u用户名 -p 但是用这个命令在登录阿里云的mysql时,会报ERROR 2027 (HY000): Malformed packet
- Vue 数据响应式原理
Vue 数据响应式原理 Vue.js 的核心包括一套“响应式系统”.“响应式”,是指当数据改变后,Vue 会通知到使用该数据的代码.例如,视图渲染中使用了数据,数据改变后,视图也会自动更新. 举个简单 ...