之前写过关于Hadoop方面的MapReduce框架的文章MapReduce框架Hadoop应用(一) 介绍了MapReduce的模型和Hadoop下的MapReduce框架,此文章将进一步介绍mapreduce计算模型能用于解决什么问题及有什么巧妙优化。

MapReduce到底解决什么问题?

MapReduce准确的说,它不是一个产品,而是一种解决问题的思路,能够用分治策略来解决问题。例如:网页抓取、日志处理、索引倒排、查询请求汇总等等问题。通过分治法,将一个大规模的问题,分解成多个小规模的问题(分),多个小规模问题解决,再统筹小问题的解(合),就能够解决大规模的问题。最早在单机的体系下计算,当输入数据量巨大的时候,处理很慢。如何能够在短时间内完成处理,很容易想到的思路是,将这些计算分布在成百上千的主机上,但此时,会遇到各种复杂的问题,例如:并发计算、数据分发、错误处理、数据分布、负载均衡、集群管理与通信等,将这些问题综合起来将是比较复杂的问题了,而Google为了方便用户使用系统,提供给了用户很少的接口,去解决复杂的问题。

    (1) Map函数接口:处理一个基于key/value(后简称k/v)的数据对(pair)数据集合,同时也输出基于k/v的数据集合。

    (2) Reduce函数接口:用来合并Map输出的k/v数据集合

假设我们要统计大量文档中单词出现的次数

  Map

    输入K/V:pair(文档名称,文档内容)

    输出K/V:pair(单词,1)

  Reduce

    输入K/V:pair(单词,1)

    输出K/V:pair(单词,总计数) 

  Map伪代码:

Map(list<pair($docName, $docContent)>){//如果有多个Map进程,输入可以是一个pair,不是一个list
foreach(pair in list)
foreach($word in $docContent)
print pair($word, 1); // 输出list<k,v>
}

  Reduce伪代码:

Reduce(list<pair($word, $count)>){//大量(word,1)(即使有多个Reduce进程,输入也是list<pair>,因为它的输入是Map的输出)
map<string,int> result;
foreach(pair in list)
         if result.isExist($word)
             result[$word] += $count;
         else
             result[$word] = 1; foreach($keyin result)
print pair($key, result[$key]); //输出list<k,v>
}

  

  可以看到,R个reduce实例并发进行处理,直接输出最后的计数结果。需要理解的是,由于这是业务计算的最终结果,一个单词的计数不会出现在两个实例里。即:如果(a, 256)出现在了实例1的输出里,就一定不会出现在其他实例的输出里,否则的话,还需要合并,就不是最终结果。

  再看中间步骤,map到reduce的过程,M个map实例的输出,会作为R个reduce实例的输入。

  问题一:每个map都有可能输出(a, 1),而最终结果(a, 256)必须由一个reduce输出,那如何保证每个map输出的同一个key,落到同一个reduce上去呢?

    这就是“分区函数”的作用。分区函数是使用MapReduce的用户按所需实现的,决定map输出的每一个key应当落到哪个reduce上的函数。如果用户没有实现,会使用默认分区函数。为了保证每一个reduce实例都能够差不多时间结束工作任务,分区函数的实现要点是:尽量负载均衡,即数据均匀分摊,防止数据倾斜造成部分reduce节点数据饥饿。如果数据不是负载均衡的,那么有些reduce实例处理的单词多,有些reduce处理的单词少,这样就可能出现所有reduce实例都处理结束,最后等待一个需要长时间处理的reduce情况。

  问题二:每个map都有可能输出多个(a, 1),这样就增大了网络带宽资源以及reduce的计算资源,怎么办?

    这就是“合并函数”的作用。有时,map产生的中间key的重复数据比重很大,可以提供给用户一个自定义函数,在一个map实例完成工作后,本地就做一次合并,这样将大大节约网络传输与reduce计算资源。合并函数在每个map任务结束前都会执行一次,一般来说,合并函数与reduce函数是一样的,区别是:合并函数是执行map实例本地数据合并,而reduce函数是执行最终的合并,会收集多个map实例的数据。对于词频统计应用,合并函数可以将:一个map实例的多个(a, 1)合并成一个(a, count)输出。

  问题三:如何确定文件到map的输入呢?

    随意即可,只要负载均衡,均匀切分输入文件大小就行,不用管分到哪个map实例都能正确处理

  问题四:map和reduce可能会产生很多磁盘io,将更适用于离线计算,完成离线作业。

MapReduce计算模型二的更多相关文章

  1. MapReduce计算模型的优化

    MapReduce 计算模型的优化涉及了方方面面的内容,但是主要集中在两个方面:一是计算性能方面的优化:二是I/O操作方面的优化.这其中,又包含六个方面的内容. 1.任务调度 任务调度是Hadoop中 ...

  2. MapReduce计算模型

    MapReduce计算模型 MapReduce两个重要角色:JobTracker和TaskTracker. ​ MapReduce Job 每个任务初始化一个Job,没个Job划分为两个阶段:Map和 ...

  3. 【CDN+】 Spark入门---Handoop 中的MapReduce计算模型

    前言 项目中运用了Spark进行Kafka集群下面的数据消费,本文作为一个Spark入门文章/笔记,介绍下Spark基本概念以及MapReduce模型 Spark的基本概念: 官网: http://s ...

  4. MapReduce 计算模型

    前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角 ...

  5. 第四篇:MapReduce计算模型

    前言 本文讲解Hadoop中的编程及计算模型MapReduce,并将给出在MapReduce模型下编程的基本套路. 模型架构 在Hadoop中,用于执行计算任务(MapReduce任务)的机器有两个角 ...

  6. 【MapReduce】二、MapReduce编程模型

      通过前面的实例,可以基本了解MapReduce对于少量输入数据是如何工作的,但是MapReduce主要用于面向大规模数据集的并行计算.所以,还需要重点了解MapReduce的并行编程模型和运行机制 ...

  7. 【MapReduce】经常使用计算模型具体解释

    前一阵子參加炼数成金的MapReduce培训,培训中的作业样例比較有代表性,用于解释问题再好只是了. 有一本国外的有关MR的教材,比較有用.点此下载. 一.MapReduce应用场景 MR能解决什么问 ...

  8. 第二步:将LAD结果的属性值二(多)值化,投入计算模型

    一文详解LDA主题模型 - 达观数据 - SegmentFault 思否 https://segmentfault.com/a/1190000012215533 SELECT COUNT(1) FRO ...

  9. 重要 | Spark和MapReduce的对比,不仅仅是计算模型?

    [前言:笔者将分上下篇文章进行阐述Spark和MapReduce的对比,首篇侧重于"宏观"上的对比,更多的是笔者总结的针对"相对于MapReduce我们为什么选择Spar ...

随机推荐

  1. Linux系统中的硬件问题如何排查?(5)

    Linux系统中的硬件问题如何排查?(5) 2013-03-27 10:32 核子可乐译 51CTO.com 字号:T | T 在Linux系统中,对于硬件故障问题的排查可能是计算机管理领域最棘手的工 ...

  2. C++ std::vector 总结笔记

    Initialization #include<iostream> #include<vector> using namespace std; int main() { vec ...

  3. 【SpringBoot】spring-session-data-redis 解决集群环境下session共享

    为什么会产生Session共享问题   集群情况下,session保存在各自的服务器的tomcat中,当分发地址至不同服务时,导致sesson取不到,就会产生session共享问题. 解决方案 负载均 ...

  4. 【NOIP2012模拟10.25】剪草

    题目 有N棵小草,编号0至N-1.奶牛Bessie不喜欢小草,所以Bessie要用剪刀剪草,目标是使得这N棵小草的高度总和不超过H.在第0时刻,第i棵小草的高度是h[i],接下来的每个整数时刻,会依次 ...

  5. GO语言学习笔记2-int类型的取值范围

    相比于C/C++语言的int类型,GO语言提供了多种int类型可供选择,有int8.int16.int32.int64.int.uint8.uint16.uint32.uint64.uint. 1.i ...

  6. Elasticsearch:aggregation介绍

    聚合(aggregation)功能集是整个Elasticsearch产品中最令人兴奋和有益的功能之一,主要是因为它提供了一个非常有吸引力对之前的facets的替代. 在本教程中,我们将解释Elasti ...

  7. 11.关于django的content_type表

    ****** Django的contenttype表中存放发的是app名称和模型的对应关系 contentType使用方式 - 导入模块 from django.contrib.contenttype ...

  8. C++ -- 类与成员

    一.初始化列表 1.是构造函数中一种成员的初始化方式   例如,class    类名 { 类名(参数列表):成员1(成员1),成员2(成员2)... {   } } 2.用此方法可以解决类中的成员与 ...

  9. JS常用正则表达式验证

    一.电话+手机 重点是正则表达式: var myreg=/^[1][3,4,5,7,8][0-9]{9}$/; 表达式的意思是: 1--以1为开头: 2--第二位可为3,4,5,7,8,中的任意一位: ...

  10. TCP,UDP,HTTP

    使用图表非常系统介绍了TCP和UDP的区别 https://blog.fundebug.com/2019/03/22/differences-of-tcp-and-udp/ 举了一个TCP/IP通讯的 ...