Time Limit: 5 Sec  Memory Limit: 512 MB

给出三个行数和列数均为N的矩阵A、B、C,判断A*B=C是否成立。

题目可能包含若干组数据。
    对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A、B、C三个矩阵。

对于每组数据,若A*B=C成立,则输出Yes,否则No。每个答案占一行。

Sample Input

1
2
2
100

Sample Output

No

HINT

对于90%的数据,N不超过100;

对于100%的数据,N不超过1000,矩阵中的数字大于等于0小于1000,数据组数不超过5组。


poj原题......就是改了下数据范围

详见:blog:poj3318 Matrix Multiplication

根据这题的数据范围$O(n^2),n<=1000$,每组大概判断17次,错误率$1/2^{17}$

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define rint register int
using namespace std;
#define N 1005
int i,j,k,n,a[N][N],b[N][N],c[N][N],d[N],e[N],f[N];
int main(){
srand();
while(scanf("%d",&n)!=EOF){
for(i=;i<=n;++i)
for(j=;j<=n;++j)
scanf("%d",&a[i][j]);
for(i=;i<=n;++i)
for(j=;j<=n;++j)
scanf("%d",&b[i][j]);
for(i=;i<=n;++i)
for(j=;j<=n;++j)
scanf("%d",&c[i][j]);
for(k=;k<=;++k){
for(i=;i<=n;++i) d[i]=rand()&;
for(e[i=]=;i<=n;e[++i]=)
for(j=;j<=n;++j)
e[i]+=c[i][j]*d[j];
for(f[i=]=;i<=n;f[++i]=)
for(j=;j<=n;++j)
f[i]+=b[i][j]*d[j];
for(i=;i<=n;++i) d[i]=f[i];
for(f[i=]=;i<=n;f[++i]=)
for(j=;j<=n;++j)
f[i]+=a[i][j]*d[j];
for(i=;e[i]==f[i]&&i<=n;++i);
if(i<=n) break;
}puts(k>?"Yes":"No");
}return ;
}

bzoj2396 神奇的矩阵(随机化)的更多相关文章

  1. bzoj2396: 神奇的矩阵

    与51nod1140一样.不过这题是多组数据的...坑.... #include<cstdio> #include<cstring> #include<cctype> ...

  2. bzoj2396: 神奇的矩阵(矩阵乘法+随机化)

    这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...

  3. 【bzoj2396】神奇的矩阵 随机化

    题目描述 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 输入 题目可能包含若干组数据.对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A.B.C三个矩阵. 输出 ...

  4. BZOJ2396 神奇的矩阵 【随机化 + 矩乘】

    题目链接 BZOJ2396 题解 一种快速判断两个矩阵是否相等的方法: 对于两个\(n * n\)矩阵,两边同时乘一个\(n * 1\)的随机矩阵,如果结果相等,那么有很大概率两个矩阵相等 如果左边是 ...

  5. [Swust OJ 1126]--神奇的矩阵(BFS,预处理,打表)

    题目链接:http://acm.swust.edu.cn/problem/1126/ Time limit(ms): 1000 Memory limit(kb): 65535 上一周里,患有XX症的哈 ...

  6. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  7. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  8. 数学&模拟:随机化-矩阵随机化

    BZOJ2396 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立 随机生成一个N乘1的矩阵R 然后判断A*B*R是否等于C*R,而前者相当于A*(B*R) 与后者一样都可以在O(N2 ...

  9. D.Starry的神奇魔法(矩阵快速幂)

    /*D: Starry的神奇魔法 Time Limit: 1 s      Memory Limit: 128 MB Submit My Status Problem Description     ...

随机推荐

  1. [CQOI2015]网络吞吐量(网络流+SPFA)

    [CQOI2015]网络吞吐量 题目描述 路由是指通过计算机网络把信息从源地址传输到目的地址的活动,也是计算机网络设计中的重点和难点.网络中实现路由转发的硬件设备称为路由器.为了使数据包最快的到达目的 ...

  2. alert(1) to win 3

    function escape(s) { s = JSON.stringify(s); return '<script>console.log(' + s + ');</script ...

  3. AWD

    扫描对方IP:ifconfig (先获取自己的IP)netdiscover -r 192.168.0.1/24   (扫描1~124的IP) 获取IP后:nmap -sV 192.168.0.104 ...

  4. python实现Restful服务 (基于flask)(1)

    参考:https://www.jianshu.com/p/6ac1cab17929 参考:https://www.cnblogs.com/alexyuyu/p/6243362.html 参考:http ...

  5. java Main方法 获取 maven 的resource 下的xml文件

    Properties properties = new Properties(); File file = new File("src/main/resources/generator.xm ...

  6. CKEDITOR无缝粘贴word

    由于工作需要必须将word文档内容粘贴到编辑器中使用 但发现word中的图片粘贴后变成了file:///xxxx.jpg这种内容,如果上传到服务器后其他人也访问不了,网上找了很多编辑器发现没有一个能直 ...

  7. 元素隐藏visibility:hidden与元素消失display:none的区别

    visibility属性用来确定元素是显示还是隐藏的,这用visibility="visible|hidden"来表示(visible表示显示,hidden表示隐藏). 当visi ...

  8. PHP PSR标准规范

    PHP PSR标准规范,PHP开发者都需要遵循规范. 官网(英文版本): https://www.php-fig.org 官网(中文版本): https://psr.phphub.org

  9. PHP操作Excel – PHPExcel 基本用法

    利用PHP实现对于Excel的写入和读取,主要借助于PHPExcel插件来完成. 准备工作: 1.下载PHPExcel的SDK,下载地址:https://github.com/PHPOffice/PH ...

  10. BaseActivity 基类

    public abstract class BaseActivity extends AppCompatActivity implements IBaseView { private ProxyAct ...