Burnside引理经典好题呀!

题解参考 https://blog.csdn.net/maxwei_wzj/article/details/73024349#commentBox 这位大佬的。

这题时间卡得很紧,注意矩阵乘法不能太多次取模,不然会TLE。   因为这题的模数是9973,加完之后再取模也不会炸。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=1e6+;
const int MOD=;
int n,m,k,tot=; struct matrix{
int m[][];
matrix() { memset(m,,sizeof(m)); }
friend matrix operator*(matrix a,matrix b) {
matrix res;
for (int i=;i<=;i++) for (int j=;j<=;j++) {
for (int k=;k<=;k++) res.m[i][j]=res.m[i][j]+a.m[i][k]*b.m[k][j];
res.m[i][j]%=MOD; //少取模不然会TLE
}
return res;
}
}; bool vis[N]; int pri[N];
void prework(int n) {
memset(vis,false,sizeof(vis)); //vis为0素数 1和数
for (int i=;i<=n;i++){
if (!vis[i]) pri[++tot]=i;
for (int j=;j<=tot&&i*pri[j]<=n;j++){
vis[i*pri[j]]=;
if (i%pri[j]==) break;
}
}
} int power(int x,int p) {
int ret=; x%=MOD;
for (;p;p>>=) {
if (p&) ret=(ret*x)%MOD;
x=(x*x)%MOD;
}
return ret;
} int phi(int n) {
int ret=n;
for (int i=;i<=tot && pri[i]<=sqrt((double)n);i++)
if (n%pri[i]==) {
ret=ret/pri[i]*(pri[i]-);
while (n%pri[i]==) n/=pri[i];
}
if (n>) ret=ret/n*(n-);
return ret%MOD;
} int count(matrix A,int p) { //计算B=A^p 然后返回sigma(B[i][i])
matrix B;
for (int i=;i<=m;i++) B.m[i][i]=;
for (;p;p>>=) {
if (p&) B=B*A;
A=A*A;
}
int ret=;
for (int i=;i<=m;i++) ret=(ret+B.m[i][i])%MOD;
return ret;
} //POJ-2888 由n(n <= 10^9)个珠子组成的项链,每个珠子共有m(m <= 10)种颜色,再给定k组限制(a, b)表示颜色a和颜色b的珠子不能相邻,问总共有多少种方案满足长度为n的项链。
//题解:Burnside引理 + 矩阵优化 + 欧拉函数 + 逆元。
int main()
{
prework();
int T; cin>>T;
while (T--) {
scanf("%d%d%d",&n,&m,&k); matrix A; //可达矩阵(类似图论)
for (int i=;i<=k;i++) {
int x,y; scanf("%d%d",&x,&y);
A.m[x][y]=A.m[y][x]=;
}
for (int i=;i<=m;i++) for (int j=;j<=m;j++) A.m[i][j]=-A.m[i][j]; int ans=;
for (int i=;i*i<=n;i++)
if (n%i==) {
ans=(ans+count(A,i)*phi(n/i)%MOD)%MOD;
if (i*i!=n) ans=(ans+count(A,n/i)*phi(i)%MOD)%MOD;
}
cout<<ans*power(n,MOD-)%MOD<<endl;
}
return ;
}

POJ-2888 Magic Bracelet(Burnside引理+矩阵优化+欧拉函数+逆元)的更多相关文章

  1. POJ 2888 Magic Bracelet ——Burnside引理

    [题目分析] 同样是Burnside引理.但是有几种颜色是不能放在一起的. 所以DP就好了. 然后T掉 所以矩阵乘法就好了. 然后T掉 所以取模取的少一些,矩阵乘法里的取模尤其要注意,就可以了. A掉 ...

  2. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  3. POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 3731   Accepted: 1227 D ...

  4. POJ 2888 Magic Bracelet(burnside引理+矩阵)

    题意:一个长度为n的项链,m种颜色染色每个珠子.一些限制给出有些颜色珠子不能相邻.旋转后相同视为相同.有多少种不同的项链? 思路:这题有点综合,首先,我们对于每个n的因数i,都考虑这个因数i下的不变置 ...

  5. POJ 2773 Happy 2006------欧几里得 or 欧拉函数。

    Happy 2006 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8359   Accepted: 2737 Descri ...

  6. 【poj 3090】Visible Lattice Points(数论--欧拉函数 找规律求前缀和)

    题意:问从(0,0)到(x,y)(0≤x, y≤N)的线段没有与其他整数点相交的点数. 解法:只有 gcd(x,y)=1 时才满足条件,问 N 以前所有的合法点的和,就发现和上一题-- [poj 24 ...

  7. 【POJ2888】Magic Bracelet Burnside引理+欧拉函数+矩阵乘法

    [POJ2888]Magic Bracelet 题意:一个长度为n的项链,有m种颜色的珠子,有k个限制(a,b)表示颜色为a的珠子和颜色为b的珠子不能相邻,求用m种珠子能串成的项链有多少种.如果一个项 ...

  8. poj 2888 Magic Bracelet

    经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...

  9. 解题:POJ 2888 Magic Bracelet

    题面 这题虽然很老了但是挺好的 仍然套Burnside引理(因为有限制你并不能套Polya定理),思路和这个题一样,问题主要是如何求方案. 思路是把放珠子的方案看成一张图,然后就巧妙的变成了一个经典的 ...

随机推荐

  1. elasticsearch relevance score相关性评分的计算

    一.多shard场景下relevance score不准确问题 1.问题描述: 多个shard下,如果每个shard包含指定搜索条件的document数量不均匀的情况下,会导致在某个shard上doc ...

  2. Codeforces 1178F DP

    题意:有一张白纸条,你需要给这张纸条染色.染色从颜色1开始染色,每次选择纸条的一段染色时,这一段的颜色必须是相同的.现在给你染色后的纸条,问有多少种染色方案? F1: 思路:最开始的想法是以染色顺序为 ...

  3. zxing opencv

           

  4. zookeeper问题排查

    一.无法启动 zookeeper之前可以很好的运行,由于zk集群不是正常的关闭,比如 强制Linux关闭,直接执行kill 命令zk的进程等原因导致zookeeper启动不了 启动命令后,查看状态,会 ...

  5. boost库:事件处理

    boost库的signal所实现的模式被命名为信号至插槽,当对应的信号被发出时,相关联的插槽即被执行. #include <boost/signal.hpp> #include <i ...

  6. Temporarily disable Ceph scrubbing to resolve high IO load

    https://blog.dachary.org/2014/08/02/temporarily-disable-ceph-scrubbing-to-resolve-high-io-load/ In a ...

  7. 07-图5 Saving James Bond - Hard Version(30 分)

    This time let us consider the situation in the movie "Live and Let Die" in which James Bon ...

  8. QT树莓派交叉编译开发环境搭建

    QT树莓派交叉编译开发环境搭建 - JerryZone <Cross-compiling Qt Embedded 5.5 for Raspberry Pi 2> <Qt for Em ...

  9. ELK Stack 7.1.1之集群搭建

    一. 环境准备:3台Linux服务器,系统为CentOS 7.5 角色划分:3台机器全部安装jdk1.8,全部安装elasticsearch (后续都简称为es集群) 主节点上需要安装kibana与l ...

  10. C# 语法特性

    C# 2.0 1.泛型(Generics). 2.泛型方法.泛型委托.泛型接口. 3.泛型约束(constraints). 4.部分类(partial). 5.匿名方法. C#3.0/C#3.5 1. ...