BZOJ 3162: 独钓寒江雪 树的同构 + 组合 + 计数
Description



Input
Output
求一棵树编号序列不同的方案数:
令 $f[u],g[u]$ 分别表示 $u$ 选/不选 的方案数.
则 $f[u]=\prod_{v\in son[u]}g[v]$,$g[u]=\prod_{v\in son[u]}g[v]+f[v]$.
然而如果要求本质不同,那么那些子树结构相同的就会算重.
假设有 $k$ 个儿子树形态相同,每一个儿子可选的方案为 $h$.
则我们要求给每一个儿子都分一种方案的方案数.
即有 $m$ 个相同的盒子,有 $k$ 种球,求给每一个盒子分配一个球(可重复)的方案数.
这个直接用可重集公式即可,即 $C_{k+m-1}^{m}$.
如何求得所有形态相同得子树呢?
这棵树无论如何旋转,重心都是不变的,以重心(或两重心之间连一个点)为根,进行树哈希+树形DP即可.
#include <cstdio>
#include <vector>
#include <cstring>
#include <algorithm>
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
typedef long long ll;
const int N=500003,mod=1000000007,mul=20011118,ha=20011118,con=2019;
vector<int>rt;
ll F[N],G[N];
int n,edges,M,root;
int hd[N],to[N<<1],nex[N<<1],mx[N],siz[N],Hash[N],sta[N];
ll qpow(ll base,ll k)
{
ll tmp=1ll;
for(;k;base=(base*base)%mod,k>>=1) if(k&1) tmp=(tmp*base)%mod;
return tmp;
}
ll inv(int a) { return qpow((ll)a, (ll)mod-2); }
bool cmp(int a,int b)
{
return Hash[a]<Hash[b];
}
inline void addedge(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void getroot(int u,int ff)
{
siz[u]=1,mx[u]=0;
for(int i=hd[u];i;i=nex[i])
if(to[i]!=ff)
getroot(to[i],u),siz[u]+=siz[to[i]],mx[u]=max(mx[u],siz[to[i]]);
M=min(M,mx[u]=max(mx[u],n-siz[u]));
}
ll C(int a,int b)
{
ll tmp=1;
for(int i=a-b+1;i<=a;++i) tmp=(1ll*i*tmp)%mod;
for(int i=1;i<=b;++i) tmp=(1ll*inv(i)*tmp)%mod;
return tmp;
}
void calc(int u,int ff)
{
int i,j,tmp=0;
Hash[u]=2019;
for(i=hd[u];i;i=nex[i])
if(to[i]!=ff)
calc(to[i],u);
sta[0]=0;
for(i=hd[u];i;i=nex[i])
if(to[i]!=ff)
sta[++sta[0]]=to[i];
sort(sta+1,sta+1+sta[0],cmp);
for(i=1;i<=sta[0];++i) Hash[u]=((ll)(Hash[u]*mul)^Hash[sta[i]])%ha;
F[u]=G[u]=1ll;
for(i=1;i<=sta[0];i=j+1)
{
j=i;
while(j<sta[0]&&Hash[sta[j+1]]==Hash[sta[j]]) ++j;
F[u]=(F[u]*C(G[sta[i]]+j-i, j-i+1))%mod;
G[u]=(G[u]*C(G[sta[i]]+F[sta[i]]+j-i, j-i+1))%mod;
}
}
int main()
{
int i,j;
// setIO("input");
scanf("%d",&n);
for(i=1;i<n;++i)
{
int x,y;
scanf("%d%d",&x,&y),addedge(x,y),addedge(y,x);
}
M=n,getroot(1,0);
for(i=1;i<=n;++i) if(mx[i]==M) rt.push_back(i);
if(rt.size()==2)
{
int pre;
root=++n;
addedge(n,rt[0]),addedge(n,rt[1]);
if(to[hd[rt[0]]]==rt[1]) hd[rt[0]]=nex[hd[rt[0]]];
else
{
for(pre=i=hd[rt[0]];i;pre=i,i=nex[i])
if(to[i]==rt[1]) { nex[pre]=nex[i]; break; }
}
if(to[hd[rt[1]]]==rt[0]) hd[rt[1]]=nex[hd[rt[1]]];
else
{
for(pre=i=hd[rt[1]];i;pre=i,i=nex[i])
if(to[i]==rt[0]) { nex[pre]=nex[i]; break; }
}
}else root=rt[0];
calc(root,0);
if(rt.size()==1) printf("%lld\n",(F[root]+G[root])%mod);
else
{
int a=rt[0],b=rt[1];
if(Hash[a]==Hash[b]) printf("%lld\n",(G[root]-C(F[a]+1,2)+mod)%mod);
else printf("%lld\n", (((F[a]*F[b])%mod) + ((F[a]*G[b])%mod) + ((G[a]*G[b])%mod)%mod));
}
return 0;
}
BZOJ 3162: 独钓寒江雪 树的同构 + 组合 + 计数的更多相关文章
- BZOJ 4337: BJOI2015 树的同构 树hash
4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ.4337.[BJOI2015]树的同构(树哈希)
BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的 ...
- [BZOJ:3162]:独钓寒江雪
题解: 求本质不同的独立集的个数 首先独立集的个数是很好做的 \(f[u][0/1]\)表示节点\(u\)不选/选的方案数 然后dp就是 \(f[u][0] = f[u][0] * (f[v][0] ...
- BZOJ 2467: [中山市选2010]生成树 [组合计数]
2467: [中山市选2010]生成树 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 638 Solved: 453[Submit][Status][ ...
- bzoj 3505 [Cqoi2014]数三角形(组合计数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题意] 在n个格子中任选3点构成三角形的方案数. [思路] 任选3点-3点共线 ...
- BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]
2302: [HAOI2011]Problem c Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 648 Solved: 355[Submit][S ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
随机推荐
- netcore 实现一个简单的Grpc 服务端和客户端
参考资料,和详细背景不做赘述. 首先定义prop 文件 syntax ="proto3"; package RouteGrpc; service HelloWorld{ rpc S ...
- 利用Ansible模块copy和fetch进行主机间文件的传递
场景: java应用程序和Ansible不在同一台机子,要读取的文件又在另一台主机. 主机a不能保存文件,可以临时保存. 文件都在主机b上保存. 需求: 需要将文件从主机c传到主机b,再从主机b传到主 ...
- PostgreSQL数据库表的内部结构
A page within a table contains three kinds of data described as follows: heap tuple(s) – A heap tupl ...
- 小记---------FLUM负载均衡配置
sink group允许组织多个sink到一个实体上,sink processors能够提供在组内所有sink之间实现负载均衡的能力,而且在失败的情况下能够进行故障转移从一个sink到另一个sink, ...
- list 小练习
li = ["alex", "WuSir", "ritian", "barry", "wenzhou" ...
- Jade学习(三)之语法规则下
jade可以自动识别单双标签 // 1.jade内容: input(type="button", value="点击") div // 此时输出❌error:i ...
- kill - 终止进程
SYNOPSIS(总览) kill[-ssignal|-p][-a]pid... kill -l [ signal ] DESCRIPTION (描述) kill 给指定进程发送指定信号. 如果没有指 ...
- CentOS 7.6 下载和安装
一. CentOS 7.6 下载 官网下载地址:https://www.centos.org/download/ 选择Minimal ISO 选择适合自己的下载路径即可. 二.CentOS 7.6 安 ...
- python cv2的视频检测:睁眼闭眼
如题,想实现一个简单的根据摄像头的某一帧检测睁眼闭眼的功能. 初步的想法是: 1. cv2调用计算机摄像头,读取某一帧的画面. 2. 将该画面作为 哈尔-人脸分类器的输入接口,根据分类器结果返回分类的 ...
- logstash操作
1.安装 1>安装java 2> #wget https://artifacts.elastic.co/downloads/logstash/logstash-5.6.3.tar.gz#t ...