被一道数论题卡了半天

网上的题解说只要匹配l或者r就行,想了下还真是。。

能让r1和r2对其就让他们对其,不能对其就讨论一下两种情况就可以了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; ll cul(ll l1, ll r1, ll l2, ll r2, ll t) {
l1 += t;
r1 += t;
return max(0ll, min(r1, r2) - max(l1, l2) + );
} int main()
{
ll l1, r1, v1, l2, r2, v2;
while(~scanf("%lld %lld %lld %lld %lld %lld", &l1, &r1, &v1, &l2, &r2, &v2)) {
l1++, r1++, l2++, r2++;
ll d = __gcd(v1, v2);
ll l = abs(r1 - r2);
ll ans = ;
ll t1 = l / d * d;
ll t2 = t1 + d;
ans = max(ans, cul(l1, r1, l2, r2, t1));
ans = max(ans, cul(l1, r1, l2, r2, t2));
ans = max(ans, cul(l2, r2, l1, r1, t1));
ans = max(ans, cul(l2, r2, l1, r1, t2));
cout << ans << endl;
}
return ;
}

数论GCD——cf1055C的更多相关文章

  1. UVA.12716 GCD XOR (暴力枚举 数论GCD)

    UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 ...

  2. CF1025B Weakened Common Divisor【数论/GCD/思维】

    #include<cstdio> #include<string> #include<cstdlib> #include<cmath> #include ...

  3. HDU 1722 Cake (数论 gcd)(Java版)

    Big Number 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1722 ——每天在线,欢迎留言谈论. 题目大意: 给你两个数 n1,n2 . 然后 ...

  4. 数论----gcd和lcm

    gcd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=x*y*k*k,而lcm=x*y*k,所以a*b=gcd*lcm. ...

  5. hdu 5505(数论-gcd的应用)

    GT and numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  6. CF984 C. Finite or not?【数论/GCD】

    [链接]:CF [题意]:n组样例,对于每组样例,给你三个数p q b,问你p/q在b进制下是不是一个有限小数,是的话输出Finite,否则输出Infinite. [分析]:b的过程是对q约分,那么只 ...

  7. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  8. HDU - 5584 LCM Walk (数论 GCD)

    A frog has just learned some number theory, and can't wait to show his ability to his girlfriend. No ...

  9. HDU - 5974 A Simple Math Problem (数论 GCD)

    题目描述: Given two positive integers a and b,find suitable X and Y to meet the conditions: X+Y=a Least ...

随机推荐

  1. CTF里的LSB

  2. CometOJ Contest #3 C

    题目链接:https://cometoj.com/contest/38/problem/C?problem_id=1542&myself=0&result=0&page=1&a ...

  3. 拾遗:Perl 在 Shell 脚本编程中的应用

    Perl 对我用途,仅是作为 Shell 脚本中的文本处理器:在较大的软件工程里,更多的是使用 C.go 等编译型语言. Perl 是一种历史比较悠久的动态编程语言,在各种类 Unix 系统中得到了应 ...

  4. NEO4J亿级数据全文索引构建优化

    NEO4J亿级数据全文索引构建优化 一.数据量规模(亿级) 二.构建索引的方式 三.构建索引发生的异常 四.全文索引代码优化 1.Java.lang.OutOfMemoryError 2.访问数据库时 ...

  5. Algo: Basic

    1. 二维数组的查找 2. 替换空格 3. 从尾到头打印链表 4. 重建二叉树 5. 用两个栈实现队列 6. 旋转数组的最小数字 7. 斐波那契数列 8. 跳台阶 9. 变态跳台阶 10. 矩阵覆盖 ...

  6. css实现单行、多行文本溢出显示省略号(…)

    一.单行文本溢出显示省略号(…) 省略号在ie中可以使用text-overflow:ellipsis了,但有很多的浏览器都需要固定宽度了,同时ff这些浏览器并不支持text-overflow:elli ...

  7. [JZOJ2679] 跨时代

    题目 题目大意 给你一堆边,你要将它们围成面积最大的矩形. 边不一定要用完,而且围成的矩形不能凸出一块. \(n\leq 16\) \(l_i \leq 15\) 思考历程 看到这题的第一眼,就会立马 ...

  8. 一阶段项目 总结 之 两张图片对比 手写 jquery 也可以使用beer slider 插件

    <!DOCTYPE html><html> <head>  <meta charset="utf-8">  <title> ...

  9. Kunbernetes从私有仓库nexus拉取镜像

    1.docker登陆认证 [root@master ~]# vim /etc/docker/daemon.json { "insecure-registries": [" ...

  10. python实现全局配置和用户配置文件

    一.文件目录格式 二.代码 1.conf.__init__.py import importlib import os from conf import gsettings class Setting ...