BZOJ2038 小Z的袜子(莫队之源)
题意+思路:
给你m个区间询问,问每个区间内的$\displaystyle \frac{\sum x^2-(R-L+1)}{(R-L)(R-L+1)} $,其中x为每种数字的个数,用cnt存储;
所以我们需要用莫队处理每个区间的$\displaystyle \sum x^2 $
相邻状态转移如果是$O(i)$,复杂度就为$O(in\sqrt{n})$,因为这里状态转移是$O(1)$的,所以复杂度为$O(n\sqrt{n})$
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<stack>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#include<map>
#include<functional> #define fst first
#define sc second
#define pb push_back
#define mem(a,b) memset(a,b,sizeof(a))
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define lc root<<1
#define rc root<<1|1
#define lowbit(x) ((x)&(-x)) using namespace std; typedef double db;
typedef long double ldb;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> PI;
typedef pair<ll,ll> PLL; const db eps = 1e-;
const int mod = 1e9+;
const int maxn = 3e5+;
const int maxm = 2e6+;
const int inf = 0x3f3f3f3f;
const db pi = acos(-1.0); inline ll gcd(ll a, ll b){
return b==?a:gcd(b,a%b);
}
int block;
ll res;//存储sigma x^2
struct Blc{
int l, r;
int id;
bool operator < (const Blc &b)const{
if(l/block == b.l/block) return r < b.r;
return l/block < b.l/block;
}
}blc[maxn];
int a[maxn];
ll cnt[maxn];
ll ansx[maxn], ansy[maxn];//储存答案x/y void insert(int x){
res -= cnt[x]*cnt[x];
cnt[x]++;
res += cnt[x]*cnt[x];
return;
} void remove(int x){
res -= cnt[x]*cnt[x];
cnt[x]--;
res += cnt[x]*cnt[x];
return;
} int main(){
int n, m;
scanf("%d %d", &n, &m);
block = sqrt(n);
for(int i = ; i <= n; i++)scanf("%d", &a[i]);
for(int i = ; i < m; i++){
blc[i].id=i;
scanf("%d %d", &blc[i].l, &blc[i].r);
}
mem(cnt, );
sort(blc, blc+m);
int l, r;
l = r = ;//光标
cnt[a[]]++;
res = ;
for(int i = ; i < m; i++){
int id = blc[i].id;
if(blc[i].l==blc[i].r){
ansx[id] = ;
ansy[id] = ;
continue;
}
while(l < blc[i].l) remove(a[l++]);
while(l > blc[i].l) insert(a[--l]);
while(r < blc[i].r) insert(a[++r]);
while(r > blc[i].r) remove(a[r--]); ll x, y, g;
x = res - (blc[i].r - blc[i].l + );
y = (blc[i].r - blc[i].l)*(blc[i].r - blc[i].l + 1ll);
g = gcd(y, x);
ansx[id] = x/g;
ansy[id] = y/g;
}
for(int i = ; i < m; i++){
printf("%lld/%lld\n", ansx[i], ansy[i]);
}
return ;
}
BZOJ2038 小Z的袜子(莫队之源)的更多相关文章
- BZOJ2038 小Z的袜子 莫队
BZOJ2038 题意:q(5000)次询问,问在区间中随意取两个值,这两个值恰好相同的概率是多少?分数表示: 感觉自己复述的题意极度抽象,还是原题意有趣(逃: 思路:设在L到R这个区间中,x这个值得 ...
- [国家集训队][bzoj2038] 小Z的袜子 [莫队]
题面: 传送门 思路: 又是一道标准的莫队处理题目,但是这道题需要一点小改动:求个数变成了求概率 我们思考:每次某种颜色从i个增加到i+1个,符合要求的情况多了多少? 原来的总情况数是i*(i-1)/ ...
- 【填坑向】bzoj2038小Z的袜子 莫队
学莫队必做题,,,但是懒得写.今天来填个坑 莫队水题 莫队实际上就是按一个玄学顺序来离线计算询问,保证复杂度只会多一个n1/2,感觉是玄学(离线算法都很玄学) 易错点:要开long long(卡我半天 ...
- 小Z的袜子 & 莫队
莫队学习 & 小Z的袜子 引入 莫队 由莫涛巨佬提出,是一种离线算法 运用广泛 可以解决广大的离线区间询问题 莫队的历史 早在mt巨佬提出莫队之前 类似莫队的算法和莫队的思想已在Codefor ...
- BZOJ 2038 [2009国家集训队]小Z的袜子 莫队
2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...
- 【国家集训队2010】小Z的袜子[莫队算法]
[莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...
- bzoj 2308 小Z的袜子(莫队算法)
小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...
- P1494 [国家集训队]小Z的袜子/莫队学习笔记(误
P1494 [国家集训队]小Z的袜子 题目描述 作为一个生活散漫的人,小\(Z\)每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小\(Z\)再也无法忍受这恼人的找袜子过程,于是他 ...
- BZOJ2038 [2009国家集训队]小Z的袜子 莫队+分块
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...
随机推荐
- 31.用python中的serial向串口发送和接收数据(案例一)
代码功能说明:1.向串口助手发送十六进制数据:0X01,0X03,0X00,0X00,0X00,0X01,0X84,0X0A: 2.用串口助手向代码发送数据,并将发送过来的数据保存在数据库中,按数据和 ...
- Java并发-几种常见的锁
这几天在忙着投提前批内推,前面看的好多东西没有总结,正好这两天补上顺带复习一下 synchronized:Java之重型锁
- iOS - 创建可以在 InterfaceBuilder 中实时预览的自定义控件
一.需求实现一个前后带图标的输入框 这是一个简单的自定义控件,很容易想到自定义一个视图(UIView),然后前后的图标使用 UIImageView 或者 UIButton 显示,中间放一个 UITex ...
- windows I/O设备
当外部设备连接到windows后,设备所连接到的集线器驱动程序将为设备分配硬件ID,然后Windows 使用硬件 Id 查找设备与包含设备驱动程序的驱动程序包之间最近的匹配项. 如果查找到,设备就可以 ...
- python判断是否是质数
质数:只能被1和它自身整除 # 获取用户输入的数,判断是否是质数 num = int(input('输入一个任意的大于1的整数:')) i=2 # 创建一个变量,记录是否是质数,默认num是质数 fl ...
- Spring Boot2 系列教程 (十四) | 统一异常处理
如题,今天介绍 SpringBoot 是如何统一处理全局异常的.SpringBoot 中的全局异常处理主要起作用的两个注解是 @ControllerAdvice 和 @ExceptionHandler ...
- CSP-S rp++
心无旁骛 认真思考 努力骗分(哈哈) I Love CSP! 反正像我这种大菜鸟也考不了多少 尽力打 本次考试期望 day1 100 70-100 30-? day2 100 ? ? 总:300-? ...
- Friday the Thirteenth 黑色星期五 USACO 模拟 超级简单做法
1003: 1.1.3 Friday the Thirteenth 黑色星期五 时间限制: 1 Sec 内存限制: 128 MB提交: 8 解决: 8[提交] [状态] [讨论版] [命题人:外部 ...
- 2D地图擦除算法
. 关于2D地图擦除算法,去年我写过一个实现,勉强实现了地形擦除,但跟最终效果还相差甚远,这次我写了一个完整的实现,在此记录,留个印象. . 去年的版本<<算法 & 数据结构--裁 ...
- 你还不会Git?那就不要写代码了(二)
Git 命令练习 git的删除,添加,修改与日志 which vi 查看命令的目录 ⌃ a 光标去开头 ⌃ E 光标去结尾 ehco 'hellow world asd' > test.txt ...