import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
# make fake data
n_data = torch.ones(, )
x0 = torch.normal(*n_data, ) #每个元素(x,y)是从 均值=*n_data中对应位置的取值,标准差为1的正态分布中随机生成的
y0 = torch.zeros() # 给每个元素一个0标签
x1 = torch.normal(-*n_data, ) # 每个元素(x,y)是从 均值=-*n_data中对应位置的取值,标准差为1的正态分布中随机生成的
y1 = torch.ones() # 给每个元素一个1标签
x = torch.cat((x0, x1), ).type(torch.FloatTensor) # shape (, ) FloatTensor = -bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (,) LongTensor = -bit integer
# torch can only train on Variable, so convert them to Variable
x, y = Variable(x), Variable(y) # draw the data
plt.scatter(x.data.numpy()[:, ], x.data.numpy()[:, ], c=y.data.numpy())#c是一个颜色序列 #plt.show()
#神经网络模块
class Net(torch.nn.Module):#继承神经网络模块
def __init__(self,n_features,n_hidden,n_output):#初始化神经网络的超参数
super(Net,self).__init__()#调用父类神经网络模块的初始化方法,上面三行固定步骤,不用深究
self.hidden = torch.nn.Linear(n_features,n_hidden)#指定隐藏层有多少输入,多少输出
self.predict = torch.nn.Linear(n_hidden, n_output)#指定预测层有多少输入,多少输出
def forward(self,x):#搭建神经网络
x = F.relu(self.hidden(x))#积极函数激活加工经过隐藏层的x
x = self.predict(x)#隐藏层的数据经过预测层得到预测结果
return x
net = Net(,,)#声明一个类对象
print(net) plt.ion()#在Plt.ion和plt.ioff之间的代码,交互绘图
plt.show()
#神经网络优化器,主要是为了优化我们的神经网络,使他在我们的训练过程中快起来,节省社交网络训练的时间。
optimizer = torch.optim.SGD(net.parameters(),lr = 0.01)#其实就是神经网络的反向传播,第一个参数是更新权重等参数,第二个对应的是学习率
loss_func = torch.nn.CrossEntropyLoss()#标签误差代价函数 for t in range():
out = net(x)
loss = loss_func(out,y)#计算损失
optimizer.zero_grad()#梯度置零
loss.backward()#反向传播
optimizer.step()#计算结点梯度并优化,
if t % == :
plt.cla()# Clear axis即清除当前图形中的之前的轨迹
prediction = torch.max(F.softmax(out), )[]#转换为概率,后面的一是最大值索引,如果为0则返回最大值
pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, ], x.data.numpy()[:, ], c=pred_y, s=, lw=, cmap='RdYlGn')
accuracy = sum(pred_y == target_y) / .#求准确率
plt.text(1.5, -, 'Accuracy=%.2f' % accuracy, fontdict={'size': , 'color': 'red'})
plt.pause(0.1) plt.ioff()
plt.show()

下面的是一个比较快搭建神经网络的代码,在上面的代码进行修改,代码如下

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
# make fake data
n_data = torch.ones(, )
x0 = torch.normal(*n_data, ) #每个元素(x,y)是从 均值=*n_data中对应位置的取值,标准差为1的正态分布中随机生成的
y0 = torch.zeros() # 给每个元素一个0标签
x1 = torch.normal(-*n_data, ) # 每个元素(x,y)是从 均值=-*n_data中对应位置的取值,标准差为1的正态分布中随机生成的
y1 = torch.ones() # 给每个元素一个1标签
x = torch.cat((x0, x1), ).type(torch.FloatTensor) # shape (, ) FloatTensor = -bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (,) LongTensor = -bit integer
# torch can only train on Variable, so convert them to Variable
x, y = Variable(x), Variable(y) # draw the data
plt.scatter(x.data.numpy()[:, ], x.data.numpy()[:, ], c=y.data.numpy())#c是一个颜色序列 #plt.show()
#神经网络模块
net2 = torch.nn.Sequential(
torch.nn.Linear(,),
torch.nn.ReLU(),
torch.nn.Linear(,)
) plt.ion()#在Plt.ion和plt.ioff之间的代码,交互绘图
plt.show()
#神经网络优化器,主要是为了优化我们的神经网络,使他在我们的训练过程中快起来,节省社交网络训练的时间。
optimizer = torch.optim.SGD(net.parameters(),lr = 0.01)#其实就是神经网络的反向传播,第一个参数是更新权重等参数,第二个对应的是学习率
loss_func = torch.nn.CrossEntropyLoss()#标签误差代价函数 for t in range():
out = net(x)
loss = loss_func(out,y)#计算损失
optimizer.zero_grad()#梯度置零
loss.backward()#反向传播
optimizer.step()#计算结点梯度并优化,
if t % == :
plt.cla()# Clear axis即清除当前图形中的之前的轨迹
prediction = torch.max(F.softmax(out), )[]#转换为概率,后面的一是最大值索引,如果为0则返回最大值
pred_y = prediction.data.numpy().squeeze()
target_y = y.data.numpy()
plt.scatter(x.data.numpy()[:, ], x.data.numpy()[:, ], c=pred_y, s=, lw=, cmap='RdYlGn')
accuracy = sum(pred_y == target_y) / .#求准确率
plt.text(1.5, -, 'Accuracy=%.2f' % accuracy, fontdict={'size': , 'color': 'red'})
plt.pause(0.1) plt.ioff()
plt.show()

莫烦PyTorch学习笔记(五)——分类的更多相关文章

  1. 莫烦PyTorch学习笔记(五)——模型的存取

    import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() ...

  2. 莫烦pytorch学习笔记(八)——卷积神经网络(手写数字识别实现)

    莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch ...

  3. 莫烦pytorch学习笔记(七)——Optimizer优化器

    各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as ...

  4. 莫烦PyTorch学习笔记(六)——批处理

    1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径. 2.DataLoader Da ...

  5. 莫烦pytorch学习笔记(二)——variable

    .简介 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Variable和tensor的区别和联系 Variable是篮子, ...

  6. 莫烦PyTorch学习笔记(三)——激励函数

    1. sigmod函数 函数公式和图表如下图     在sigmod函数中我们可以看到,其输出是在(0,1)这个开区间内,这点很有意思,可以联想到概率,但是严格意义上讲,不要当成概率.sigmod函数 ...

  7. 莫烦 - Pytorch学习笔记 [ 二 ] CNN ( 1 )

    CNN原理和结构 观点提出 关于照片的三种观点引出了CNN的作用. 局部性:某一特征只出现在一张image的局部位置中. 相同性: 同一特征重复出现.例如鸟的羽毛. 不变性:subsampling下图 ...

  8. 莫烦 - Pytorch学习笔记 [ 一 ]

    1. Numpy VS Torch #相互转换 np_data = torch_data.numpy() torch_data = torch.from_numpy(np_data) #abs dat ...

  9. 莫烦PyTorch学习笔记(四)——回归

    下面的代码说明个整个神经网络模拟回归的过程,代码含有详细注释,直接贴下来了 import torch from torch.autograd import Variable import torch. ...

随机推荐

  1. gdb常用功能

    1,调试core dump 文件    ulimit -c 1024:设置coredump文件大小为1024,否则默认不会生成coredump文件    gdb -c core:gdb调试该cored ...

  2. nutch二次开发环境搭建

    开发环境: ubuntu14.04 + jdk1.7 + eclispe +nutch1.7 1:解压下好nutch1.7 src 源码(wget http://archive.apache.org/ ...

  3. 3.4_springboot2.x整合spring Data Elasticsearch

    Spring Data Elasticsearch 是spring data对elasticsearch进行的封装. 这里有两种方式操作elasticsearch: 1.使用Elasticsearch ...

  4. .NET Core 3.0之深入源码理解Startup的注册及运行

    原文:.NET Core 3.0之深入源码理解Startup的注册及运行   写在前面 开发.NET Core应用,直接映入眼帘的就是Startup类和Program类,它们是.NET Core应用程 ...

  5. Docker学习のC/S模式

    我们操作docker是通过命令行客户端,然后和守护进程通信 以前的是通过命令行 我们还可以通过RemoApI的形式,通过自己的程序访问docker 和守护进程链接方式

  6. Docker学习のDocker的简单应用

    一.常见基本docker命令 docker是在一个linux虚拟机上运行的(对于windows来说),打开Docker quickStart terminal,就连街上了docker的 daemon ...

  7. Activiti学习笔记9 — UserTask共有任务的使用

    1.创建流程引擎对象 private ProcessEngine processEngine = ProcessEngines.getDefaultProcessEngine(); 2.发布一个流程 ...

  8. mysql分区partition详解

    分区管理  论坛 1. RANGE和LIST分区的管理 针对非整形字段进行RANG\LIST分区建议使用COLUMNS分区.  RANGE COLUMNS是RANGE分区的一种特殊类型,它与RANGE ...

  9. 深度探索C++对象模型之第二章:构造函数语意学之成员初始值列表

    当我们需要设置class member的初值时,要么是经过member initialization list ,要么在construcotr内. 一.先讨论必须使用member initializa ...

  10. amaze UI(mark)

    为移动而生 Amaze UI 以移动优先(Mobile first)为理念,从小屏逐步扩展到大屏,最终实现所有屏幕适配,适应移动互联潮流. 组件丰富,模块化 Amaze UI 含近 20 个 CSS ...