每个pi要求

  这个只需要正反DP(?)一次就行了,可以发现这个是有决策单调性的,用分治优化

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,inf=1e9;
int n;
int a[maxn],f[maxn][];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
void solve(int l,int r,int L,int R,int ty)
{
if(l>r||L>R)return;
int mid=(l+r)>>,pos;
double mx=0.0;
for(int i=L;i<=R&&i<=mid;i++)
{
if((double)a[i]-a[mid]+sqrt(mid-i)>=mx)
mx=(double)a[i]-a[mid]+sqrt(mid-i),pos=i;
}
f[mid][ty]=(int)ceil(mx);
solve(l,mid-,L,pos,ty);solve(mid+,r,pos,R,ty);
}
int main()
{
read(n);
for(int i=;i<=n;i++)read(a[i]);
solve(,n,,n,);
reverse(a+,a++n);
solve(,n,,n,);
for(int i=;i<=n;i++)printf("%d\n",max(f[i][],f[n-i+][]));
}

bzoj2216: [Poi2011]Lightning Conductor(分治决策单调性优化)的更多相关文章

  1. BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】

    Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...

  2. BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】

    题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...

  3. BZOJ2216: [Poi2011]Lightning Conductor(DP 决策单调性)

    题意 题目链接 Sol 很nice的决策单调性题目 首先把给出的式子移项,我们要求的$P_i = max(a_j + \sqrt{|i - j|}) - a_i$. 按套路把绝对值拆掉,$p_i = ...

  4. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

  5. 【洛谷3515】[POI2011] Lightning Conductor(决策单调性)

    点此看题面 大致题意: 给你一个序列,对于每个\(i\)求最小的自然数\(p\)使得对于任意\(j\)满足\(a_j\le a_i+p-\sqrt{|i-j|}\). 证明单调性 考虑到\(\sqrt ...

  6. 洛谷P3515 [POI2011]Lightning Conductor(决策单调性)

    题意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) ...

  7. bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】

    参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...

  8. CF868F Yet Another Minimization Problem 分治决策单调性优化DP

    题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...

  9. [POI2011]Lightening Conductor(决策单调性)

    好久没写过决策单调性了. 这题其实就是 $p_i=\lceil\max\limits_{j}(a_j-a_i+\sqrt{|i-j|})\rceil$. 拆成两边,先只考虑 $j<i$,然后反过 ...

随机推荐

  1. 三个线程ABC,交替打印ABC

    转载与:https://www.cnblogs.com/x_wukong/p/4009709.html 创建3个线程,让其交替打印ABC . 输出如下:  ABCABCABCABC. 方法:使用syn ...

  2. 利用maven进行项目管理

    下面为maven项目管理的一个结构 首先pom是路径文件,我们在编译或是运行程序时调用到jdk或一些自己写的jar包时会需要指明物理路径,这里的pom是一样的道理,同时在maven的管理下多出来了一些 ...

  3. 《Effective C++》读书笔记 条款03 尽可能使用const 使代码更加健壮

    如果你对const足够了解,只需记住以下结论即可: 将某些东西声明为const可帮助编译器侦测出错误用法,const可被施加于任何作用于内的对象.函数参数.函数返回类型.成员函数本体. 编译器强制实施 ...

  4. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  5. 以太坊开发(二)使用Ganache CLI在私有链上搭建智能合约

    以太坊开发(二)使用Ganache CLI在私有链上搭建智能合约 在上一篇文章中,我们使用Truffle自带的客户端Truffle Develop,在私有链上搭建并运行了官方提供的WebPack智能合 ...

  6. 水仙花数---基于python

    # coding:utf-8"""水仙花数是指一个 n 位数(n≥3 ),它的每个位上的数字的 n 次幂之和等于它本身(例如:1^3 + 5^3+ 3^3 = 153) ...

  7. SGU 326 Perspective(最大流)

    Description Breaking news! A Russian billionaire has bought a yet undisclosed NBA team. He's plannin ...

  8. TensorFlow源码框架 杂记

    一.为什么我们需要使用线程池技术(ThreadPool) 线程:采用“即时创建,即时销毁”策略,即接受请求后,创建一个新的线程,执行任务,完毕后,线程退出: 线程池:应用软件启动后,立即创建一定数量的 ...

  9. <Effective C++>读书摘要--Implementations<一>

    1.For the most part, coming up with appropriate definitions for your classes (and class templates) a ...

  10. Css入门课程 Css基础

    html css javascript三者关系 html是网页内容的载体 css是网页内容的表现,外观控制 javascript是网页逻辑处理和行为控制 css相对于html标签属性的优势 css简化 ...