Description

请找出一组合法的解使得\(\frac {1}{x} + \frac{1}{y} + \frac {1}{z} = \frac {2}{n}\)成立 其中\(x,y,z\)为正整数并且互不相同

Input

一个整数\(n\)

Output

一组合法的解\(x, y ,z\),用空格隔开 若不存在合法的解,输出\(-1\)

首先,最先容易想到的是令\(x,y,z\)其中一个数为\(n\),那么我们现在的问题就变成了求解这个式子。

\[\frac{1}{x}+\frac{1}{y}=\frac{1}{n}
\]

如果你是一个学过高中数学的人,

你会发现,这可以裂项(是叫这个吧?喵喵喵?)

\[\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n(n+1)}
\]

按照常理来说,一般人都会证明一下,但是我不会证明啊!!

所以其实刚开始我没有意识到是裂项

然后,先观察样例。

当\(n=7\)的时候三个解分别为\(7,8,56\),嗯?暗示着我什么?

接下来代入\(n,n+1.n(n+1)\)到式子中,貌似是正解?

交上去Wa了?,结果发现没有判断无解。

无解条件:$n=1 \(或\)n=0$

如果\(n=1\)的时候的话,显然,三个以整数为分母(且互不相同),分子为\(1\)的分数,相加不可能大于等于\(2\)。

最大是\(1+\frac{1}{2}+\frac{1}{3}\)。

还有\(n=0\),这个分数无意义,还求什么解。

代码

#include<cstdio>
#define lo long long
#define R register using namespace std; lo n;
int main()
{
scanf("%lld",&n);
if(n==1 or n==0)puts("-1");
else printf("%lld %lld %lld",n,n+1,n*(n+1));
}

数学【CF743C】Vladik and fractions的更多相关文章

  1. Codeforces Round #384 (Div. 2) C. Vladik and fractions 构造题

    C. Vladik and fractions 题目链接 http://codeforces.com/contest/743/problem/C 题面 Vladik and Chloe decided ...

  2. Codeforces 743C - Vladik and fractions (构造)

    Codeforces Round #384 (Div. 2) 题目链接:Vladik and fractions Vladik and Chloe decided to determine who o ...

  3. [codeforces743C]:Vladik and fractions(数学)

    题目传送门 题目描述 请找出一组合法解使得$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{n}$成立. 其中$x,y,z$为正整数且互不相同. 输入格式 一 ...

  4. Codeforces Round #384 (Div. 2) C. Vladik and fractions(构造题)

    传送门 Description Vladik and Chloe decided to determine who of them is better at math. Vladik claimed ...

  5. 【44.64%】【codeforces 743C】Vladik and fractions

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  6. vjudge I - Vladik and fractions 一道小学生的提。

    原题链接:https://vjudge.net/contest/331993#problem/I Vladik and Chloe decided to determine who of them i ...

  7. CodeForces 743C Vladik and fractions (数论)

    题意:给定n,求三个不同的数满足,2/n = 1/x + 1/y + 1/z. 析:首先1是没有解的,然后其他解都可以这样来表示 1/n, 1/(n+1), 1/(n*(n+1)),这三个解. 代码如 ...

  8. CF C. Vladik and fractions——构造题

    题目 构造一组 $x, y, z$,使得对于给定的 $n$,满足 $\frac{1}{x}  + \frac{1}{y} + \frac{1}{z} =  \frac{2}{n}$. 分析: 样例二已 ...

  9. CF2.C

    C. Vladik and fractions time limit per test 1 second memory limit per test 256 megabytes input stand ...

随机推荐

  1. Chrome profile manager

    由于Firefox有profile manager这么一说,所以自然联想到chrome应该也有. 默认chrome的profile manager被禁止了. 1. chrome://flags 2. ...

  2. 用一个时钟在FPGA中计算直方图

    直方图对数字数据的分析通常是一种有用的工具.不过,要从一个直方图获得可靠的结果,必须获得大量数据,通常是要10万到100万个点.如果需要分析一个ADC的数字输出,可以采用一片FPGA(图1). 图中显 ...

  3. loj6102 「2017 山东二轮集训 Day1」第三题

    传送门:https://loj.ac/problem/6102 [题解] 贴一份zyz在知乎的回答吧 https://www.zhihu.com/question/61218881 其实是经典问题 # ...

  4. 洛谷金秋夏令营模拟赛 第2场 T11738 伪神

    调了一个下午只有八十分QAQ md弃了不管了 对拍也没拍出来 鬼知道是什么数据把我卡了QAQ 没事我只是个SB而已 这题其实还是蛮正常的 做法其实很简单 根据链剖的构造方法 你每次修改都是一段又一段的 ...

  5. bzoj3940&&bzoj3942 Ac自动机||kpm算法

    方法就是维护一个动态栈 记录栈的每一位匹配到串的哪一位的编号 第一道kmp第二道ac自动机 自己理会 #include<cstdio> #include<cstring> #i ...

  6. SQL SERVER 创建远程数据库链接 mysql oracle sqlserver

    遇到的坑 在连接Oracle时,因为服务器为10g 32位版本,然后在本地安装了32为10g客户端,然后一直报错[7302.7303],后来下载了12c 64位版本,安装成功后,问题解决 原因:mss ...

  7. Windows下基于python3使用word2vec训练中文维基百科语料(一)

    在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https:/ ...

  8. js 验证ip列表

    如题. <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title ...

  9. 以下suse11.3x64可以安装pycrypto-2.6.1

    rpm -qa adaptec-firmware-1.35-2.15.4gnome-menus-branding-SLED-11.1-14.26man-pages-3.15-2.23.1crackli ...

  10. 学习 Linux,101: 自定义或编写简单脚本【转】

    转自:http://www.ibm.com/developerworks/cn/linux/l-lpic1-105-2/index.html 学习如何使用标准的 shell 语法.循环和控制结构,以及 ...