【题目大意】给定一个n*m的土地,每块可以种a或b作物,每种作物在不同的位置有不同的收成,同时,有q个子矩阵中,全部种指定的作物(a或b)会有一定的加成收成,求最大收成。  

  【数据范围】

    50% n,m<=10 q<=500

    100% n,m<=100 q<=50000

  首先我们解决小范围数据,比较容易的可以看出来这是一个最小割模型,先将ans+=value。我们只需要(source,i,value[i][0]),表示不种植a的代价,(i,sink,value[i][1])表示不种植b的代价。对于额外的加成,如果全是b作物,我们可以表示为(x,cur,inf),(cur,sink,value) x为矩阵中的所有点,这个表示我们只要矩阵中的任意一个元素没有种植b(也就是某个点割得与sink相连的边),那么我们都可以找到一条新的增广路,流量为value。

  那么我们可以发现,这种建模的边是n*m*q级别的,因为每次我们新的cur点都与矩阵中所有的点连接了,我们需要来增加图的点的数量来减少边的数量,那么我们可以用二维st表来表示每个矩阵中的点,num[i][j][p][q]表示矩阵中i,j点为左上角,长为2^p,宽为2^q的矩阵,我们将图拆为a,b两层,分别表示a,b作物的矩阵。

  因为新加入的点是为了简化之前的图的,所以我们同层的st表之间的边应该与之前连接的边的方向相同,因为我们这样做相当与把原图拆成了两部分,原图的两部分之间是互通的,所以我们也应该将两层st表之间加上双向边,如果不加这个的话,会出现由于额外价值过大导致割了连接源和汇的边而保留两个附加收成的点,这样当然是不合法的。

  反思:开始建的是正方形的st表,后来发现了这种建发的诸多不便,这样不能保证图的规模,因为条形的矩阵可以卡掉这个。然后开始的图没有两层之间双向连边,所以导致了些奇奇怪怪的问题(也不奇怪,就是上述的不合法割边)。

//By BLADEVIL
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxm 2000010
#define maxn 110
#define inf (1000000000) using namespace std; int n,m,query;
int source,sink,tot,l;
int key[maxn][maxn][],num[maxn][maxn][][][];
int pre[maxm],other[maxm],last[maxm],len[maxm];
int que[maxm],dis[maxm]; void connect(int x,int y,int z) {
pre[++l]=last[x];
last[x]=l;
other[l]=y;
len[l]=z;
//printf("|%d %d %d\n",x,y,z);
} bool bfs() {
memset(dis,,sizeof dis);
que[]=source; dis[source]=;
int h=,t=;
while (h<t) {
int cur=que[++h];
for (int p=last[cur];p;p=pre[p]) {
if (len[p]<=) continue;
if (!dis[other[p]]) {
que[++t]=other[p];
dis[other[p]]=dis[cur]+;
if (other[p]==sink) return true;
}
}
}
return false;
} int dinic(int x,int flow) {
//printf("%d %d\n",x,flow);
if (x==sink) return flow;
int rest=flow;
for (int p=last[x];p;p=pre[p]) {
if (len[p]<=) continue;
if (!rest) continue;
if (dis[other[p]]!=dis[x]+) continue;
int tmp=dinic(other[p],min(rest,len[p]));
len[p]-=tmp; len[p^]+=tmp; rest-=tmp;
}
return flow-rest;
} int main() {
freopen("d.in","r",stdin); freopen("d.out","w",stdout);
scanf("%d%d%d",&n,&m,&query);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++) scanf("%d",&key[i][j][]);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++) scanf("%d",&key[i][j][]);
l=;
for (int p=;(<<p)<=n;p++)
for (int q=;(<<q)<=m;q++)
for (int i=;i+(<<p)-<=n;i++)
for (int j=;j+(<<q)-<=m;j++) {
num[i][j][p][q][]=++tot; num[i][j][p][q][]=++tot;
}
source=++tot; sink=++tot;
int ans=;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++) {
connect(source,num[i][j][][][],key[i][j][]); connect(num[i][j][][][],source,);
connect(num[i][j][][][],sink,key[i][j][]); connect(sink,num[i][j][][][],);
ans+=key[i][j][]+key[i][j][];
}
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
connect(num[i][j][][][],num[i][j][][][],inf),connect(num[i][j][][][],num[i][j][][][],);
for (int p=;(<<p)<=n;p++)
for (int q=;(<<q)<=m;q++)
for (int i=;i+(<<p)-<=n;i++)
for (int j=;j+(<<q)-<=m;j++) {
connect(num[i][j][p][q][],num[i][j][p][q][],inf);connect(num[i][j][p][q][],num[i][j][p][q][],);
if (q) {
connect(num[i][j][p][q][],num[i][j][p][q-][],inf); connect(num[i][j][p][q-][],num[i][j][p][q][],);
connect(num[i][j][p][q][],num[i][j+(<<(q-))][p][q-][],inf); connect(num[i][j+(<<(q-))][p][q-][],num[i][j][p][q][],);
connect(num[i][j][p][q-][],num[i][j][p][q][],inf); connect(num[i][j][p][q][],num[i][j][p][q-][],);
connect(num[i][j+(<<(q-))][p][q-][],num[i][j][p][q][],inf); connect(num[i][j][p][q][],num[i][j+(<<(q-))][p][q-][],);
} else
if (p) {
connect(num[i][j][p][q][],num[i][j][p-][q][],inf); connect(num[i][j][p-][q][],num[i][j][p][q][],);
connect(num[i][j][p][q][],num[i+(<<(p-))][j][p-][q][],inf); connect(num[i+(<<(p-))][j][p-][q][],num[i][j][p][q][],);
connect(num[i][j][p-][q][],num[i][j][p][q][],inf); connect(num[i][j][p][q][],num[i][j][p-][q][],);
connect(num[i+(<<(p-))][j][p-][q][],num[i][j][p][q][],inf);
connect(num[i][j][p][q][],num[i+(<<(p-))][j][p-][q][],);
}
}
while (query--) {
int x1,y1,x2,y2,w,z,q=,p=,cur=++tot; scanf("%d%d%d%d%d%d",&x1,&y1,&x2,&y2,&z,&w);
ans+=w;
while ((<<(p+))<=x2-x1+) p++;
while ((<<(q+))<=y2-y1+) q++;
if (z) {
connect(cur,sink,w); connect(sink,cur,);
connect(num[x1][y1][p][q][],cur,inf); connect(cur,num[x1][y1][p][q][],);
connect(num[x1][y2-(<<q)+][p][q][],cur,inf); connect(cur,num[x1][y2-(<<q)+][p][q][],);
connect(num[x2-(<<p)+][y1][p][q][],cur,inf); connect(cur,num[x2-(<<p)+][y1][p][q][],);
connect(num[x2-(<<p)+][y2-(<<q)+][p][q][],cur,inf); connect(cur,num[x2-(<<p)+][y2-(<<q)+][p][q][],);
} else {
connect(source,cur,w); connect(cur,source,);
connect(cur,num[x1][y1][p][q][],inf); connect(num[x1][y1][p][q][],cur,);
connect(cur,num[x1][y2-(<<q)+][p][q][],inf); connect(num[x1][y2-(<<q)+][p][q][],cur,);
connect(cur,num[x2-(<<p)+][y1][p][q][],inf); connect(num[x2-(<<p)+][y1][p][q][],cur,);
connect(cur,num[x2-(<<p)+][y2-(<<q)+][p][q][],inf); connect(num[x2-(<<p)+][y2-(<<q)+][p][q][],cur,);
}
}
while (bfs()) ans-=dinic(source,inf);
printf("%d\n",ans);
fclose(stdin); fclose(stdout);
return ;
}

【HNOI】d 最小割的更多相关文章

  1. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  2. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. BZOJ3438 小M的作物(最小割)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=3438 Description 小M在MC里开辟了两块巨大的耕地A和B(你可以认为 ...

  5. 最大流-最小割 MAXFLOW-MINCUT ISAP

    简单的叙述就不必了. 对于一个图,我们要找最大流,对于基于增广路径的算法,首先必须要建立反向边. 反向边的正确性: 我努力查找了许多资料,都没有找到理论上关于反向边正确性的证明. 但事实上,我们不难理 ...

  6. bzoj1412最小割

    太羞耻了,m n写反了(主要是样例n m相等) 建图方法比较高(ji)端(chu),对于可以加栅栏的地方连上1的边,然后求最小割即可 为了让代码优(suo)美(duan),我写了一个check,避免多 ...

  7. 【BZOJ1497】[NOI2006]最大获利 最小割

    裸的最小割,很经典的模型. 建图:要求总收益-总成本最大,那么将每条弧与源点相连,流量为成本,每个收益与汇点相连,流量为收益,然后每条弧与它所能到达的收益相连,流量为inf. 与源点相连的是未被选中的 ...

  8. 二分图&网络流&最小割等问题的总结

    二分图基础: 最大匹配:匈牙利算法 最小点覆盖=最大匹配 最小边覆盖=总节点数-最大匹配 最大独立集=点数-最大匹配 网络流: 技巧: 1.拆点为边,即一个点有限制,可将其转化为边 BZOJ1066, ...

  9. CQOI 2016 不同的最小割

    题目大意:一个无向图,求所有点对不同的最小割种类数 最小割最多有n-1个,这n-1个最小割构成一个最小割树 分治法寻找n-1个最小割.对于当前点集X,任选两点为ST做最小割,然后找出与S相连的所有点和 ...

随机推荐

  1. <Android>列表、网格、画廊视图及适配器的绑定

    列表视图和适配器的绑定 列表视图既可以使用ListView组件,也可以继承ListActivity.显示可以是ArrayAdapter,也可以是游标SimpleCursorAdapter,还可以是继承 ...

  2. headers的描述

    Cache-Control 作用: 这个是非常重要的规则. 这个用来指定Response-Request遵循的缓存机制.各个指令含义如下 Cache-Control:Public   可以被任何缓存所 ...

  3. 【week2】结对编程-四则运算 及感想

    首先我要说一下,我得作业我尽力了,但是能力有限,还需练习. 四则运算,改进代码流程: 1.手动输入算式(属于中缀表达式) 2.将中缀表达式转化成后缀表达式 生成out数组 3.一个操作数栈,一个运算符 ...

  4. 【Linux】- CentOS安装Mysql 5.7

    CentOS7默认数据库是mariadb,而不是mysql.CentOS7的yum源中默认是没有mysql的.所以不能使用yum install直接安装. 下载mysql的repo源 cd /usr/ ...

  5. Jenkins系列-Jenkins插件下载镜像加速

    可供选择的jenkins2 插件镜像列表: Jenkins 所有镜像列表: http://mirrors.jenkins-ci.org/status.html比如日本的镜像: http://mirro ...

  6. IIS安装出现“安装程序无法复制文件CONVLOG.EX_”的解决办法

    重新安装了一次IIS,结果就在重新安装的时候,出现安装程序无法复制文件CONVLOG.EX_,上网找了找资料,是因为secedit.sdb 数据库的问题,既然是因为这个文件的问题,那么我们就可以使用w ...

  7. [CLR via C#]值类型的装箱和拆箱

    我们先来看一个示例代码: namespace ConsoleApplication1 { class Program { static void Main(string[] args) { Array ...

  8. UML图之协作图

    创建方法: 1,new----collaboration diagram 2,根据序列图按F5转换 增加对象链接(图2-4-4)    (1) 选择Object Link 工具栏按钮. (2) 单击要 ...

  9. 【Python】ORM框架SQLAlchemy的使用

    ORM和SQLAlchemy简介 对象关系映射(Object Relational Mapping,简称ORM),简单的来说,ORM是将数据库中的表与面向对象语言中的类建立了一种对应的关系.然后我们操 ...

  10. jsp文件过大,is exceeding 65535 bytes limit

    今天修改配置项的时候,遇到了一个异常,Generated servlet error:The code of method _jspService(HttpServletRequest, HttpSe ...