分布式算法-一致性HASH
分布式算法
参考:
https://blog.51cto.com/alanwu/1431397
https://blog.csdn.net/kojhliang/article/details/81205516
元数据问题
在分布式存储中面临的一个重要问题是如何在多个存储节点上分布数据。了解GFS之类文件系统的同学都知道可以采用元数据服务器(MS)的方式决定数据块在存储节点上的分布映射。采用元数据服务器方式可以很好的将数据和元数据分离,访问文件系统命令空间的时候,可以直接从元数据服务器上获取文件的映射信息。基于MS的分布式存储架构如下图所示:

基于元数据服务器的方式是分布式存储的经典架构,虽然看起来很完美,但是还是存在如下两大主要问题:
1,可扩展性受限于元数据服务器的能力。所有的元数据信息都集中在元数据服务器上面,所以,当Client想要获取元数据时就需要访问该服务器。因此,整体的带载能力(Client的个数)就受限于元数据服务器的能力。元数据服务器就是整个分布式系统的潜在瓶颈点。特别当Client访问小文件时,会产生大量的元数据信息,此时元数据服务器就会成为系统性能瓶颈。
2,元数据服务器是分布式系统中的单点故障点。一旦元数据服务器发生故障,整个分布式存储系统将无法正常工作,因此,元数据服务器的可靠性尤为重要。
总结起来,基于元数据服务器的分布式存储架构最大的问题在于可扩展能力和可靠性。而且这些问题的核心点都在于元数据服务器上。对此也有很多的系统优化手段,例如,针对元数据服务器影响系统可扩展性能力的问题,可以采用分布式元数据服务器的手段进行缓解,但是,又会额外引入分布式元数据服务器之间数据同步和加锁互斥的问题。针对元数据服务器单点故障的问题,可以采用HA的手段增强系统可靠性,很多厂商在Hadoop分布式文件系统中做了很多元数据服务器HA的尝试。
分布式算法
但无论怎么优化,采用元数据服务器方式的分布式存储都不能达到线性可扩展的目的。基本上扩展能力呈现对数LOG的曲线方式。为了达到线性可扩展的能力,业界开始考虑如何去掉元数据服务器,即去中心化。其中发展出来的算法有HASH算法、一致性HASH算法、弹性HASH算法和CRUSH算法。此处重点讨论一致性HASH算法。
HASH算法
在谈到一致性HASH的时候,首先需要考虑HASH算法。在分布式存储中应用的HASH算法很简单,其可以描述如下:

当Client需要将一个文件写入Storage的时候,可以将文件路径作为Key值算出一个HASH值,这个HASH算法需要有很好的分布特征。在得出这个HASH值之后,再和Storage Node的个数N做取余操作,得出的结果在0到N-1之间,该结果就是需要访问的Storage Node编号。从这种方法来看,一个文件在Storage Node中的布局不需要元数据服务器的介入,文件和存储节点之间的映射关系由HASH函数来决定,并且是可计算的。
HASH算法看起来非常的完美,但是,其问题在于如果动态增加一个节点之后,这种数据映射关系就会遭到破坏,原因在于HASH算法中的N发生了变化。为了建立新的映射关系,不得不需要引入大量的数据迁移操作,这在大规模分布式存储中是不允许发生的。为了解决这个问题,引入了一致性HASH算法。
一致性HASH
一致性HASH的核心思想是将HASH结果域做成一个空间,并且为所有的存储节点分配一个标签值,这些标签值属于这个HASH值空间。通常这种关系可以描述成一个哈希环,这个空间就构成了这个HASH环,所有存储节点是这个环上的一个点。可以描述如下:

当Client需要将一个文件写入Storage的时候,同样可以将文件路径作为HASH函数的参数,然后得到一个HASH值。这个得到的HASH值肯定会属于HASH值空间,也就是说在HASH环上面肯定可以找到一个对应的点。例如,这个点位于SN1和SN2之间。按照协议,可以选择顺时针离HASH值最近的节点作为数据存储点。即新写入的文件可以存入SN2。
一致性HASH算法的最大优点在于避免添加存储节点之后的大规模数据迁移。例如在刚才的例子中,如果后来在SN1和SN2之间添加了一个SN8,那么原先存入SN2中的一部分数据需要迁移到SN8,但是,其余节点不需要做任何的数据迁移操作。

显然这种方法大大降低了数据迁移量,又能很好的避免元数据服务器带来的问题。因此,一致性HASH算法被广泛应用到了CDN系统、SWIFT对象存储系统、Amazon的dynamo存储系统中。
一致性HASH的改进
一致性哈希算法在服务节点太少时,容易因为节点分部不均匀而造成数据倾斜问题。例如系统中只有两台服务器,可能大量的数据都存在一台服务器,另一台服务器只存储了很少的数据。为了解决这种情况,可以增加虚拟环。

为了解决这种数据倾斜问题,一致性哈希算法引入了虚拟节点机制,即对每一个服务节点计算多个哈希,注意,这里的多个哈希算法应该使得结果尽量分布均匀,才能最大程度减少数据倾斜的情况。每个计算结果位置都放置一个此服务节点,称为虚拟节点。具体做法可以在服务器ip或主机名的后面增加编号来实现。例如上面的情况,可以为每台服务器计算三个虚拟节点,于是可以分别计算 “Node A#1”、“Node A#2”、“Node A#3”、“Node B#1”、“Node B#2”、“Node B#3”的哈希值。同时数据定位算法不变,只是多了一步虚拟节点到实际节点的映射,例如定位到“Node A#1”、“Node A#2”、“Node A#3”三个虚拟节点的数据均定位到Node A上。这样就解决了服务节点少时数据倾斜的问题。在实际应用中,通常将虚拟节点数设置为32甚至更大,因此即使很少的服务节点也能做到相对均匀的数据分布。
分布式算法-一致性HASH的更多相关文章
- 分布式算法(一致性Hash算法)
一.分布式算法 在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法( ...
- 一致性Hash算法(分布式算法)
一致性哈希算法是分布式系统中常用的算法,为什么要用这个算法? 比如:一个分布式存储系统,要将数据存储到具体的节点(服务器)上, 在服务器数量不发生改变的情况下,如果采用普通的hash再对服务器总数量取 ...
- 分布式缓存技术memcached学习(四)—— 一致性hash算法原理
分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...
- 【转载】一致性hash算法释义
http://www.cnblogs.com/haippy/archive/2011/12/10/2282943.html 一致性Hash算法背景 一致性哈希算法在1997年由麻省理工学院的Karge ...
- 一致性Hash算法及使用场景
一.问题产生背景 在使用分布式对数据进行存储时,经常会碰到需要新增节点来满足业务快速增长的需求.然而在新增节点时,如果处理不善会导致所有的数据重新分片,这对于某些系统来说可能是灾难性的. 那 ...
- 分布式缓存技术memcached学习系列(四)—— 一致性hash算法原理
分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前, ...
- [转载] 一致性hash算法释义
转载自http://www.cnblogs.com/haippy/archive/2011/12/10/2282943.html 一致性Hash算法背景 一致性哈希算法在1997年由麻省理工学院的Ka ...
- php一致性hash算法的应用
阅读这篇博客前首先你需要知道什么是分布式存储以及分布式存储中的数据分片存储的方式有哪些? 分布式存储系统设计(2)—— 数据分片 阅读玩这篇文章后你会知道分布式存储的最优方案是使用 一致性hash算法 ...
- 分布式一致性hash算法
写在前面 在学习Redis的集群内容时,看到这么一句话:Redis并没有使用一致性hash算法,而是引入哈希槽的概念.而分布式缓存Memcached则是使用分布式一致性hash算法来实现分布式存储. ...
随机推荐
- 解决vuex的数据刷新(F5)后会被初始化的问题
介绍一个vuex的数据刷新(F5)后会被初始化的问题处理的插件:vuex-localstorage 实现的原理大概就是监听浏览器的刷新,关闭事件,把vuex的值存储到本地localstorage,刷新 ...
- 使用POI导出EXCEL工具类并解决导出数据量大的问题
POI导出工具类 工作中常常会遇到一些图表需要导出的功能,在这里自己写了一个工具类方便以后使用(使用POI实现). 项目依赖 <dependency> <groupId>org ...
- django_5:表单1——文件上传
上传文件1 class UserForm(forms.Form): name = forms.CharField() headImg = forms.FileField() def regist(re ...
- objc反汇编分析,手工逆向libsystem_blocks.dylib
上一篇<block函数块为何物?>介绍了在函数中定义的block函数块的反汇编实现,我在文中再三指出__block变量和block函数块自始还都是stack-based的,还不完全适合在离 ...
- 原生js实现简单的下拉加载
#获取当前滚动条的高度document.documentElement.scrollTop #获取当前窗口的高度 document.documentElement.clientHeight #获取当前 ...
- 【Linux系列】Centos 7安装 Mysql8.0(五)
目的 本文主要介绍以下两点: 一. 如何安装Mysql8.0 二. Navicat连接Mysql 一. 如何安装Mysql8.0 安装Mysql有两种方式: 直接下载官方的源(比较慢) https:/ ...
- Java学习笔记 线程池使用及详解
有点笨,参考了好几篇大佬们写的文章才整理出来的笔记.... 字面意思上解释,线程池就是装有线程的池,我们可以把要执行的多线程交给线程池来处理,和连接池的概念一样,通过维护一定数量的线程池来达到多个线程 ...
- 【论文阅读】Binary Multi-View Clustering
文章地址:https://ieeexplore.ieee.org/document/8387526 出自:IEEE Trans. on Pattern Analysis and Machine Int ...
- Spring源码分析之AOP
1.AOP简介 AOP即面向切面编程(Aspect Oriented Programming),通过预编译方式及运行期动态代理实现程序功能的统一维护的一种技术.使用aop对业务逻辑的各个部分进行隔离, ...
- js贪吃蛇(构造函数)
给大家分享一下这几天我研究的一个贪吃蛇,挺简单的,但是实现起来其实有点绕的,我给大家附上完整代码,一起分析学习一下,主要用的是构造函数. 思想: .设计蛇:属性有宽.高.方向.状态(有多少节),方法: ...