http://www.lydsy.com/JudgeOnline/problem.php?id=1911

夏令营里斜率优化的例题,我调了一晚上,真是弱啊。

先推公式吧($sum_i$表示$x_1 \dots x_i$的和):

$$①f(i)=f(j)+a(sum_i -sum_j)^2 +b(sum_i -sum_j)+c$$

$$②f(i)=f(k)+a(sum_i -sum_k)^2 +b(sum_i -sum_k)+c$$

①和②分别表示从j和k这两个位置的转移过程,且满足$0≤j<k<i$

然后假设②比①更优,则②的等号右边减去①的等号右边大于0

$$f(k)-f(j)+a(sum_i -sum_k)^2 -a(sum_i -sum_j)^2 +b(sum_i -sum_k)  -b(sum_i -sum_j)>0$$

把平方算出来后相同的项消去得到:

$$f(k)-f(j)+2asum_i(sum_j - sum_k)-a(sum_j^2 - sum_k^2)+b(sum_j -sum_k)>0$$

又因为$sum_j -sum_k < 0$,所以两边同时除以$sum_j -sum_k$:

$$\frac{f(k)-f(j)}{sum_j -sum_k}+2asum_i +b-a(sum_j + sum_k)<0$$

移项后通分:

$$2asum_i +b<\frac{[f(k)+asum_k^2]-[f(j)+asum_j^2]}{sum_k -sum_j}$$

$2asum_i +b$是单调递减的,这样就化成了一个斜率优化的式子,对于一个位置$t$,可以把它看成二维平面上坐标为$(sum_t,f(t)+asum_t^2)$的点,用双端队列维护一个这些点的下凸壳进行转移,时间复杂度$O(n)$

夏令营讲题时自己推式子推错了!!!斯巴达!!!!!!!!!好久才发现。式子改正过来后对拍还是错,后来发现改的太急了忘加了两个括号斯巴达!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

为了A掉这道题耗了一晚上,全是脑残和手残造成的,已无力吐槽_(:з」∠)_

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1000003;
typedef long long ll;
int in() {
int k = 0, fh = 1; char c = getchar();
for(; c < '0' || c > '9'; c = getchar())
if (c == '-') fh = -1;
for(; c >= '0' && c <= '9'; c = getchar())
k = (k << 3) + (k << 1) + c - '0';
return k * fh;
} ll f[N], sum[N], key;
int n, a, b, c, q[N]; bool cmp(int x, int y) {
return f[y] + sum[y] * sum[y] * a - f[x] - sum[x] * sum[x] * a > key * (sum[y] - sum[x]);
}
bool cmpk(int x, int y, int z) {
return (f[z] + sum[z] * sum[z] * a - f[y] - sum[y] * sum[y] * a) * (sum[y] - sum[x])
> (f[y] + sum[y] * sum[y] * a - f[x] - sum[x] * sum[x] * a) * (sum[z] - sum[y]);
} int main() {
n = in(); a = in(); b = in(); c = in();
sum[0] = 0;
for(int i = 1; i <= n; ++i)
sum[i] = in(), sum[i] += sum[i - 1]; ll qu;
int head = 0, tail = 1, t;
f[0] = 0;
f[1] = sum[1] * sum[1] * a + sum[1] * b + c;
q[0] = 0; q[1] = 1;
for(int i = 2; i <= n; ++i) {
key = sum[i] * a * 2 + b;
while (head < tail && cmp(q[head], q[head + 1])) ++head;
t = q[head]; qu = sum[i] - sum[t];
f[i] = f[t] + qu * qu * a + qu * b + c;
while (head < tail && cmpk(q[tail - 1], q[tail], i)) --tail;
q[++tail] = i;
} printf("%lld\n", f[n]);
return 0;
}

( ̄▽ ̄")不过最后还是A掉了233

【BZOJ 1911】【APIO 2010】特别行动队的更多相关文章

  1. BZOJ 1911 (APIO 2010) 特别行动队

    题目描述 你有一支由n名预备役士兵组成的部队,士兵从1到n编号,要将他们拆分成若干特别行动队调入战场.出于默契考虑,同一支特别行动队中队员的编号应该连续,即为形如(i,i+1,-,i+k)的序列. 编 ...

  2. [bzoj 1911][Apio 2010]特别行动队(斜率优化DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1911 分析: 首先可以的到裸的方程f[i]=max{f[j]+a*(Si-Sj)^2+b*(S ...

  3. APIO 2010 特别行动队 斜率优化DP

    Description 你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号,要将他们拆分 成若干特别行动队调入战场.出于默契的考虑,同一支特别行动队中队员的编号 应该连续,即为形如 (i ...

  4. 【BZOJ 1911】 [Apio2010]特别行动队

    Description Input Output Sample Input 4 -1 10 -20 2 2 3 4 Sample Output 9 HINT   转移方程 f[i]=max(f[j]+ ...

  5. [APIO 2010] 特别行动队

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1911 [算法] 设前i个士兵"修正"后的最大战斗力为fi 令su ...

  6. 【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)

    dsy1911: [Apio2010]特别行动队 [题目描述] 有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和.求如何分才能使得各个 ...

  7. 【BZOJ】【1911】【APIO2010】特别行动队commando

    DP/斜率优化 嗯……第三道斜率优化的题目了. 定义 $s[i]=\sum_{k=1}^{i} x[k] $ 方程:$f[i]=max\{ f[j]+a*(s[i]-s[j])^2+b*(s[i]-s ...

  8. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  9. 【斜率DP】BZOJ 1911:特别行动队

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3006  Solved: 1360[Submit][Statu ...

  10. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

随机推荐

  1. leetcode-HouseRobber

    这道题比较简单,所以我会介绍的比较粗略: 题目: 有一个小偷想沿着马路上的房子偷东西,每家每户都有一些钱,但这条街上装了监控系统,如果相邻的两户人家都被偷了的话那么就会触发报警器.小偷的目标就是在不触 ...

  2. codevs哈希水题

    1230 多重hash练习一下,不用也可以 // // main.cpp // codeves1230 // // Created by Candy on 9/29/16. // Copyright ...

  3. [No000053]我25岁了,是应该继续挣钱,还是选择自己的爱好?--正好庆祝自己25岁生日

    你所问的问题正是问题所在.停止做出重大决策,专注于缩小你想到达的地位与你之间的差距. 成功的生活并非由简单而鲜明的决定组成,它们更像这幅图: 但悲伤的是,太多人的状态类似于这幅图: 我知道这听上去很显 ...

  4. jsp前三章测试改错题

      (选择一项) A: B: C: D: 正确答案是 B ,B/S架构并不是C/S架构的替代品,有些程序例如大型的网络游戏一般使用的是C/S架构. (选择多项) A: B: C: D: 正确答案是 A ...

  5. java 22 - 10 多线程之两种代码实现方式的比较与区别

  6. PAT 1023. 组个最小数 (20)

    给定数字0-9各若干个.你可以以任意顺序排列这些数字,但必须全部使用.目标是使得最后得到的数尽可能小(注意0不能做首位).例如:给定两个0,两个1,三个5,一个8,我们得到的最小的数就是1001555 ...

  7. keytool命令记录

    1.生成服务器端私钥kserver.keystore文件 2.根据私钥,导出服务器端安全证书 3.将服务器端证书,导入到客户端的Trust KeyStore中 4.生成客户端私钥kclient.key ...

  8. MVC-RedirectToAction跳转到其他Area

    mvc使用Area分区开发后,存在不同Area之间的跳转,需要为每个区间添加Area规则,如下: using System.Web.Mvc; namespace web.Areas.FrameSet ...

  9. web 前端常用组件【05】ZTree

    web 项目或多或少都会有涉及到什么人员职称树,菜单树,组织机构树等. 历手三四个项目有大有小,采用的树前端都是 Ztree. 有些优秀的J2EE 框架将这些常用的组件都封装起来,作为模块化的组件提供 ...

  10. ALinq Dynamic 使用指南——前言

    一.简介 ALinq Dynamic 为ALinq以及Linq to SQL提供了一个Entiy SQL的查询接口,使得它们能够应用Entity SQL 进行数据的查询.它的原理是将Entiy SQL ...